学年

質問の種類

数学 大学生・専門学校生・社会人

といて欲しいです!!

数学演習Ⅰ (8) 1. 次の1次方程式を拡大係数行列を掃出すことによって解け。 また拡大係数行列の階数を答えよ。 (1) 3x - 2y = 5 (2) 5x-2y+z=1 3x +5y +2 = 13 (3) 2x +y +3z = 4x 2w 7w 5w (5) { 2. 次の1次方程式を解け。 (1) 7x + 3y = 0 (2) 3x - 2y + 4z = 0 2x -Y +4z = 0 (3) -x +y -3z = 0 +2y3z T 0 w +y 2 = 0 2w +2y +z = 0 W +2z 0 2w +x -2z = 20 3. 1次方程式 2x +3y 5 ax +y = b が (1) ただ一つの解をもつための、 (2) 解をもたぬための、 (3) 無限個の解をもつための a, b について また各々の場合の係数行列A、 拡大係数行列 A' の階数を答えよ。 さらに (3) の場合に解を求めよ。 4. 1次方程式 -2x +2y +3z = 4 T +y -4z = b ax +8y +z -6 が (1) ただ一つの解をもつための、 (2) 解をもたぬための、 (3) 無限個の解をもつための a, b について また各々の場合の係数行列 A、 拡大係数行列 A' の階数を答えよ。 さらに (3) の場合に解を求めよ。 5. 1次方程式 3-2y+4z=0 の解と、 集合 2 (-))--(1) y = C1 (23) -3 7 C1, C2 は任意 との共通部分を求めよ。 6. 1次方程式 T +2 = 0 2x +y +2 = 0 5x +ay +2z 0 が自明な解æ=y=z=0以外の解をもつためのa についての条件を求め、そのときの解を求めよ。 +7y +2 = 18 +y 一之 x+ +3x+4y -X +3y 444 x+ +2x -Y -2z 2w +3x -2y -4z -10w +2x -7y +3z 6w 8 +11y +5z = -2 -4 = -5 -2 271 -7 + C2

回答募集中 回答数: 0
数学 高校生

最後の注の部分の比例式が成り立つのは何故なのか分からないので、 解説して欲しいです。 よろしくお願いします

9 連立1次方程式 / 連立方程式の解の存在条件 [(a−2)x+4ay=−1 の定数として、次のエリについての連立方程式を考える。ょー (34+1)y=a ] のとき, この連立方程式の解は存在しない. (麗澤大) [] のとき, この連立方程式の解は無数に存在する 等式の条件の扱い方 等式の条件式が1個与えられたら,それを使ってどれか1文字を消去するの が原則的な手法である.x,yの連立1次方程式の場合,例えば一方の式からxをyで表して、他方の式 に代入するとyの1次方程式に帰着できる. xの方程式x=gの解 p=0のときx=2, p=0 かつ g=0のときxは任意, p=0 かつq≠0 のとき解なし Þ 解答 100>A 70 A<[X] @ 1 (a−2)x+4ay=-1 >x> [<]X[** (2) x-(3a+1)y=a 3 であり、 ②により, x=(3a+1)y+a ③を①に代入して, (a−2){(3a+1)y+a}+4ay=−1 .. (3a²-a-2)y=-a²+2a-1 ④ (a-1)(3a+2)y=-(a-1)2 の方程式④の解y に対して, ③ によりxがただ1つ定まり, 連立方程式 ①か つ②の解(x,y) がただ1つ定まる. よって, 連立方程式の解が 「存在しない・無数に存在する」 条件は、④の解が 「存在しない・無数に存在する」ことと同値である. よって, ④ から のとき解なし. 3 (a-1)(3a+2)=0かつ-(α-1)20, つまり α=- (a-1)(3a+2)=0かつ(a-1)2=0, つまり α=1のとき解は無数 . 注連立1次方程式の解の存在条件を座標平面で考える方法もある. |ax+by=e... Ⓒ ((a, b)=(0, 0) lcx+dy=f・イ (c, d)=(0, 0) 一般に, を考えてみよう.xy平面上でアイは直線を表す. アとイが交われば,その交 点の座標が連立方程式の解である. したがって, ●解が存在しないということは,直線アとイが共有点をもたない,つまりアとイ が平行で一致しないことと同値. ●解が無数に存在するということは,直線アとイが一致することと同値. —ということになる. 直線アとイが平行である (一致も含む) ための条件は、 a:b=c:d(← ad-bc=0) a TRAN a= a= 方程式の解が存在する・存在しな いをとらえるには, 実際に求めよ うと考えればよい.y を求めるな ら ④式を導くところ. 0-1,84502121 3012120 T I+=2(1-1) +3021 本問の場合、次のようになる. ①と②が平行 (一致も含む) であ あるための条件は,十 (a−2): 4a=1:{-(3a+1)} (a-2) (3a+1)-4a=0 ∴.3a²-a-2=0 2 a=- 1 XJIK 3' これらのときの ① ② を求め, 致するかどうか調べる (α=1の ときのみ一致する).

回答募集中 回答数: 0