学年

質問の種類

数学 高校生

(3)を解いてみました。私の解答でmの存在条件を考える時、 2m=Xと-8m=Y の両方の条件を使えばいいのか、 またはどちらかを使えばいいのか分かりませんでした。

ヨチェク ①8/130 to 212 12 軌跡 / パラメータを消去 座標平面上に直線1:y=mz-4mと放物線y=1がある.mは,IとCが異なる2点P, Qで交わるような値をとるとする.また, 線分 PQ の中点をMとする. (1) 1はmの値にかかわりなく、 ある定点を通る。 この点の座標を求めよ。 (2) m のとりうる値の範囲を求めよ. (3) Mの軌跡を求め, 座標平面上にそれを図示せよ。 (南山大 外国語, 法) 軌跡の素朴な求め方 動点の軌跡の素朴な求め方は,動点M(X, Y) を原動力 (本間ではm, 以下 パラメータと呼ぶ) で表して, それがどんな図形であるかをとらえる方法である。 直接読み取れること もあるが、一般的には,パラメータによらないXとYの関係式 (パラメータを消去した式) を作ること で、 軌跡の方程式を求めることになる。 なお、 実際にはXとYの関係式を作るとき、必ずしもX,Yを パラメータだけで表した式を用意する必要はない. 本間の場合 「Mが上」 に着目するのがうまい。 「軌跡」 と 「軌跡の方程式」 問題が「軌跡を求めよ」という要求なら, 軌跡の限界 (範囲: 不等式) を考慮しなければならないが,「軌跡の方程式を求めよ」 という要求ならば、その必要はなく、単に方程 式 (等式)を求めるだけでよい,というのが慣習である。 本間 (3) の場合 Mのx座標は,解と係数の関係を使う. y座標は1の式から (2) にも注意. 解答量 (1) 直線/は,y=mx-4m ①の右辺をmについて整理して,y=m(x-4) これは定点 (40) を通る. (2) y=1/2と①を連立して得られる方程式 ・① M C 1なければ主と 依存して パラメータでおし 1 r²-mx+4m=0· ・② 4 x 4 a XOB が異なる2つの実数解を持つ. 判別式をDとすると, D=m²-4m>0 m <0 または4<m (3) P,Qの座標をα βとし, M(X, Y) とおくと, X=- a+B 2) ・・・③ これから軌跡の限界が出てくる. PQの座標をm で表す必要はな い。 このようなときは具体化を 急がず、とりあえず文字でおく α, βは②の2解であるから,解と係数の関係により, a+β=4m よって、X=2m であり,Mは①上にあるから,Y=mX-4m⑤⑤ではなく、 =1/2で、⑤に代入しY=1/2x2-2x ④よりm= ③ ④ により,X < 0 または 8 < X X,Yをx, y に書き換え, 求める M の軌跡は 1 y= x²- ーー2x (x<0または8<x) であり, 右図太線である (○を除く)。 16 y=x²-2xy=- 04 8 x 1/2 B2 4 (a+8)2-2aß JA8 =2m²-4m と ④ から Y を X で表しても大し たことはないが (本間の場合), ⑤ (直線上にあること)に着目す るのがうまい人、 12 演習題(解答は p.104) 円 (x-2)2+y2=1と直線y=mz が異なる2点P Qで交っているとき, (1) m の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は 今の座標を明示せよ ). (群馬大・理工, 情/改題) Mが直線上にあること をうまく使う なお、図 形的に解くこともでき る. 91

回答募集中 回答数: 0
数学 高校生

ィの解説の(iii)でなんで-の方も成り立つのですか?

163 直方体 右図のような直方体 OADB-CEFG において OA=a, OB=6,DC=c とおく. \G F P ||=1,|6|=2, ||=3 とし, 2点E, Gを通る C 直線を とする. E (1) OE, OG を で表せ (2)Pを1上の点とする. このとき, OPは実数 tを用いて, OP =OE+tEG と表せる。 (ア) OP⊥EGとなるtの値を求めよ. (イ)△OEP が二等辺三角形となるときの 値をすべて求めよ. 3 B O 2 b a 1 A AA D ()() (2) (ア) OP, EG (=OG-OE) を a, L, で表し,|a|=1,||=2, 精講 ||=3, a1=c=cd=0 を用いて計算すれば, tの方程式が でてきます. これを解けば答えはでてきます. (イ) 二等辺三角形という条件は要注意です. それはどの2辺が等しいかによっ て,3つの場合が考えられるからです。 注 →3つの場合でしらべる 三辺の距離を求める (イ)|OE|=12+32=10 |OP|=|(1-t)a+t+c (1) 画 =(1−t)|a²+b²+1c1² (a+b=b.c=c.a=0) J30=12-21+1+4t²+9=5t²-2t+10 |EP|=|tEG|2=5t2 ← (i) OE OP のとき, OEPOP より,エース 253 10=5t2-2t+10 t(5t-2)=0.. t = // (t=0は不適 (OPEP のとき,|OP|=|EP|より 5t2-2t+10=5t2 2t+10=0 :.t=5 POE のとき,|EP|=|OÉRより,平日 5t2=10 t2=2. t=±√2 (1)〜() より t=±√2, 5' (2) 直方体では, 座標も有効な手段です. すなわち, A (1, 0, 0), B(0, 2, 0), C(0, 0, 3) とおくと, EG=AB だから OP= (1,0,3)+t(-1,2,0)=(-t+1, 2t3) と表せ, P(-t+1, 2t, 3), E (1, 0, 3) と座標で表して, OP2, EP2, OE' を計 算します。 解答 (1) OE=OA+OC=d+c OG=OB+OC=6+ (2) (ア)OP=OE+tEGOE+(OG-OE) =a+c+t(-a) =(1−t)a+to+c OPEG = 0 だから {(1-t)a+to+c)(-a)=0 . (t−1)|at|62=0 ||=1,||=2より t-1+4t=0 5 ( à·b=b.c=c·à=0) ポイント単に「二等辺三角形」「直角三角形」 とあったら, 場合 が3種類あることに注意 演習問題 163 右図の直方体において, AG = (5, 5, -3), H G AC=(3,1,2), BH=(3,1,-7) が成りた っている. (1) AB, AD, AE を成分で表せ. (2)直線AH 上に, △ABP が二等辺三角形 A となるように点Pをとる. (ア) <BAH= を示せ. (イ) A=tA となる実数tの値を求めよ. Di F 第8章

未解決 回答数: 1
数学 高校生

点PとQが一致するってどういうことですか? 直線に対して対称っていうことは線対称ですよね 同じ場所にある点は線対称って言えるんですか? 旧課程のチャートでは[2]は解答に書いてなかったんですけどなんで新課程ではこれが書いてあるんですか?

基本 例題 100 直線に関する対称移動 00000 直線x+y=1 に関して点Qと対称な点をPとする。 点Qが直線 □上を動く。 x-2y+8=0 上を動くとき,点Pは直線 [ ③ 基本 78,98 CHART & SOLUTION 線対称 直線 l に関して P と Qが対称 [[1] 直線 PQ がℓに垂直 e [2] 線分 PQ の中点が上にある Q 点Qが直線 x-2y+8=0 上を動くときの, 直線 l : x+y=1 に関して点Qと対称な点 Pの軌跡, と考える。 つまり, Q(s, t) に連動する点P (x,y) の軌跡 3 ① s, txyで表す。 ② x, yだけの関係式を導く。 13 解答 直線x-2y+8=0 ① ② 上を動く点をQ(s, t)とし, 直線 x+y=1 inf 線対称な直線を求め (1) るには EXERCISES ...... 2 121 4 に関して点Qと対称な点を P(x, y) とする。 |1 71 (p.137) のような方法も Q(s,t) あるが, 左の解答で用いた 軌跡の考え方は,直線以外 の図形に対しても通用する。 軌跡と方程式 [1] 点PとQが一致しない とき, 直線 PQ が直線② -8 01 iP(x,y) に垂直であるから t-y.(-1)=-1 (3) 垂直⇔傾きの積が1 8-X 線分 PQ の中点が直線②上にあるから xts+y+t=1 ④ 2 ③から s-t=x-y 線分PQの中点の座標は c+s ④から s+t=2-(x+y) s, tについて解くと s=1-y, t=1-x また,点Qは直線 ①上の点であるから s-2t+8=0 ⑤⑥に代入して すなわち 2x-y+7=0 (1-y)-2(1-x)+8=0 [2]点PとQが一致するとき、点Pは直線 ①と②の交点 上の2式の辺々を加え ると 2s=2-2y[s] 辺々を引くと -2t=2x-2 ← s, tを消去する。 ⑤ (6) ⑦ であるから x=-2,y=3 これは ⑦を満たす。 以上から、求める直線の方程式は 2x-y+7=0 方程式 ①と②を連立 させて解く。

未解決 回答数: 1