学年

質問の種類

数学 高校生

青線部の所の意味が分かりません!

(?) (2)) 基本 例 20 極限の条件から数列の係数決定など 00000 ) 数列 {an) (n=1, 2, 3, .....) が lim (3n-1)α=-6を満たすとき. limna である。 918 [類千葉工大] lim(n+an+2-√n-n)=5であるとき、定数αの値を求めよ。 p.34 基本事項 2.基本 18 針 (1) 条件 lim (3n-1)a=-6を活かすために, na-3n-1) α × n 変形 3n-1 77 数列 3n-1 は収束するから、次の極限値の性質が利用できる。 liman=α, limbn=β⇒lima,b=aβ (a,βは定数) 700 818 (2) まず 左辺の極限をαで表す。 その際の方針は p.38 基本例題18 (3) と同様。 41 (1) nan=(3n-1) anx n であり Ana を収束することが 3n-1 lim(3n-1)an=-6, n 1 1 lim =lim わかっている数列ので 表す。 72-00 3n-1 12-00 1 3 3 ? n 数 2 2章 数列の limnan=lim(3n-1)anxlim よって 72100 12-00 1 =(-6). =-2 2) lim(√n2+an+2-√n²-n) n100 (n+an+2)-(n²-n) =lim n11 √n²+an+2+√n²-n =lim 718 (a+1)n+2 √n² +an+ 2 + √√n ² -—n a n (a+1)+ 2 2 n 1+ + + 1- n² n n-co 3n-1 =lim a+1 N18 1 2 n a+1 よって、条件から =5 2 したがって a=9 mil-mila 極限値の性質を利用。 分母分子に √√n²+an+2+√√n²-n を掛け、分子を有理化。 分母分子をnで割る。 n0 であるから n=√n² αの方程式を解く。 次の関係を満たす数列 {az} について, liman と limnan を求めよ。 ア) lim (2n-1)an=1 12-00 81U (イ) lim n→∞ 2an+1 an-3 =2 n→∞ lim(√m²+an+2-√n²+2n+3)=3が成り立つとき, 定数 α の値を求めよ。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

数Iの2次方程式についての質問です。 マーカーで引いてある数字はどこから出てきたのでしょうか? 分かる方いたら教えて欲しいです🙇‍♀️!

右の図のように, BC=20cm, AB=AC, ∠A=90° の三角形ABC がある。 辺AB, AC 上に AD AE となるように2点D,Eをとり,D,Eから辺BCに 垂線を引き、その交点をそれぞれF,G とする。 長方形 DFGE の面積が20cm² となるとき,辺FG の長さを求めよ。 F CHART & SOLUTION 文章題の解法 基本 66 ① 等しい関係の式で表しやすいように, 変数を選ぶ ②解が問題の条件に適するかどうかを吟味 FG=x として, 長方形 DFGE の面積をxで表す。 そして、 面積の式を =20 とおいた の2次方程式を解く。 最後に, 求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 答 FG=x とすると, 0<FG<BC であるから A 0<x<20 ① D また, DF=BF=CG であるから 2DF=BC-FG B 20-x よって DF= 2 長方形 DFGE の面積は DF・FG=20-x.x 2 20-x ゆ x=20 2 整理すると これを解いて x2-20x+40=0 x=-(-10)±√(-10)2-1.40 =10±2√15 ここで, 02/15 <8 から 10-8<10-2/15 <20, 2<10+2/15<10+8 よって、この解はいずれも ①を満たす。 したがって FG=10±2√15 (cm) E 定義域 ←∠B=∠C=45° であるか 5, ABDF, ACEG G C 角二等辺三角形。 xの係数が偶数 → 26′型 3章 9 2次方程式 解の吟味。 0<2√15=√60<√64= =8 単位をつけ忘れないよう に。

未解決 回答数: 0
数学 中学生

例題85 (2)の解説について質問です。 なぜ場合分けの時に「0<a≦2」とおくのですか?問題文に「正の定数a」と書いてあるので0<になるのは分かりますが、なぜ≦2なのかが分かりません。

146 基本 例題 85 2次関数の係数決定 [最大値・最小値] (1) 00000 関数y=-2x2+8x+k (1≦x≦4) の最大値が4であるように,定数kの値 | (1) を定めよ。 また,このとき最小値を求めよ。 (2) 関数 y=x2-2ax+α2-2a (0≦x≦2) の最小値が11になるような正の定数 a の値を求めよ。 基本 80, 82 重要 86 指針 関数を基本形y=a(x-p)+αに直し, グラフをもとに最大値や最小値を求め、 (1)(最大値)=4 (2) (最小値)=11 とおいた方程式を解く。 (2)では, 軸x=α (a>0) が区間0≦x≦2の内か外かで場合分けして考える。 HART 2次関数の最大・最小 グラフの頂点と端をチェック 重要 例題 定義域を0≤ とき、定数 この間 指針 形が変 a=0 (最大 なお, いよ 解答 関数の (1) y=-2x2+8x+k を変形すると y=-2(x-2)2+k+8 よって, 1≦x≦4においては, YA 最大 k+8 右の図から、x=2で最大値k+8 4 012 x 区間の中央の値は 1/2で あるから, 軸 x=2は区 間 1≦x≦4で中央より 左にある。 [1] a 解答 f(x) [2] a をとる。 y=f ゆえに k+8=4 線と 最小 最大値を4とおいて, よって k=-4 このとき, x=4で最小値-4 をとる。 (2) y=x2-2ax+α² -2aを変形すると y=(x-a)2-2a [1] 0<a≦2のとき, x=αで 最小値 -2αをとる。 kの方程式を解く。 は. をと [1] YA 軸 < 「αは正」に注意。 <0<a≦2のとき, 軸x=αは区間の内。 11 -2a=11 とすると α = a 2 0 2 x →頂点x=αで最小。 これは0 <a≦2を満たさない。 [2] 2<αのとき, x=2で の確認を忘れずに。 2a最小 最小値 22-2α・2+α2-2a, つまりα-6a+4をとる。 α2-6a+4=11 とすると a²-6a-7=0 [2] YA 2-6a+4 最小 a <(a+1)(a-7)=0 これを解くと a=-1,7 02 x 軸 2 <αを満たすものは a=7 の確認を忘れずに。 以上から、 求めるαの値は α=7 -2a 2<αのとき, 軸x=αは区間の右外。 →区間の右端 x=2で最 小。 線と は をと これ これ 以上 注意 問題文 f(x)= 練習 (1) 2次関数y=x2-x+k+1の1≦x≦1における最大値が6であるとき、定数 ③ 85 kの値を求めよ。 EX61 (2) 関数 y=-x2+2ax-a-2a-1-1≦x≦0) の最大値が0になるような定数 α の値を求めよ。 練習 定義 ③ 86 と

未解決 回答数: 0