学年

質問の種類

数学 高校生

数Ⅱ 軌跡の問題です 解説3行目からわかりません!! 解説お願いします!!🙇

162 基本 例題 99 媒介変数と軌跡 00000 は定数とする。 放物線y=x'+2(a-2)x-4a+5について αがすべての 実数値をとって変化するとき、頂点の軌跡を求めよ。 基本 98, 重要 102 CHART & SOLUTION 基本例 直線 x x-2y- CHAR 線対称 xyが変化する文字αを用いて表される点の軌跡 つなぎの文字を消去して、xだけの関係式を導く 頂点の座標を (x, y) とすると x=(αの式),y=(αの式) の形に表される。 ここから, つなぎの文字αを消去して,xとyの関係式を導く。 解答 放物線の方程式を変形すると 点Qが Pの軌 y={x+(a-2)}-α²+1 y={x+(a-2)}^ -(a-2)-4a+5 ---- x=-α+2 放物線の頂点をP(x, y) とする と a=-1 ① 0 /1 2 3 X 放物線y=a(x-p)+q の頂点の座標は (p.g) y=-α²+1 ...... ② 解答 直線 上を 直線 に関 ①から α=-x+2 x これを② に代入して y=(x+2)2+1 -3a=2 a=-2 つなぎの文字αを消去。 したがって、求める軌跡は 放物線 y=(x-2)2+1 INFORMATION 媒介変数表示 図形の方程式がx=f(t), y=g(t) のように,もう1 別の変数 (媒介変数) を使って表されたとき,これ を媒介変数表示という。 y (-1,4) t=-2 (3,4) t=2 1つの実数の値に対して, x=f(t), y=g(t) によ り (x, y) の値が1つに決まり,tが実数の値をとっ て変化すると, 点(x,y) は座標平面上を動き、 図形を 描く。 (0, 1) t=-1 (2,1) t=1 0 (1, 0) 例 x=t+1, y=t2 は放物線y=(x-1) 2 を表す。 実際に点をとると, 右の図のようになる。 1=0 PRACTICE 99 3 αは定数とする。 放物線 y=x+ax+3-α について, αがすべての実数値をとって 変化するとき,頂点の軌跡を求めよ。

解決済み 回答数: 1
数学 高校生

赤丸のところで100Xになるのは分かるのですが下の10Xはなぜxではなく10xになるのか教えてほしいです🙏🏻

(1) 次の循環小数を分数で表せ。 基本 例題 20 循環小数の分数表示など (ア) 2.42 (イ) 0.342 (ウ) 3.26 p.41 基本事項 1章 3 9 37 (2) を小数で表したとき, 小数第50位の数字を求めよ。 CHART & SOLUTION 循環小数の分数表示 = (循環小数) とおき, 循環部分を消す (1)例えば,循環小数x = 0.1 は, 小数部分が1桁ずつ繰り返して いるから, 10x と xの差を考えて、 右のように計算すると 9x=1 よってx=1/23 これと同様に考える。 10x=1.11" - x=0.11. 9x=1 (ウ)x=3.26 とおいて10x=32.6 から 10x-x を計算してもよいが, 分子に小数が出て きてしまう。 100x-10x を計算する方がスムーズ。 (2) 循環小数に表し、 何個の数字が繰り返し現れるかを調べる。 k個の数が繰り返し現れる なら, 50をんで割った余りに注目。 4440 実数 (1) (ア) x=2.42 とおくと, 100x=242.4242・・・・・ 右の計算から x= 240 80 99 33 (イ) x=0.342 とおくと, 右の計算から - x= 2.4242・・・・・ 99x=240 -) 342 38 x=- ←循環部分が2桁→ 両辺を100(102) 倍。 1000x=342.342342・・・・・・ 0.342342・・・・・・ x= 999x=342 100x=326.66•••••• ◆辺々を引くと, 循環部分 が消える。 ←循環部分が3桁→ 両辺を1000 (10) 倍。 + 999 111 (ウ) x=3.26 とおくと,右の 294_49 - 10x= 32.66・・・・・・ 計算から x= 15 90 90x=294 10x-xを計算すると, 9x = 29.4 から x=- 29.4_294 49 9 90 15 9 (2) =0.243243=0.243 37 よって, 小数点以下で243の3個の数字が循環する。 50=3・16+2 243を□とすると .....0 |24 16個 2個 であるから, 小数第50位は243の2番目の数字で4である。 PRACTICE 20 2 (1) 次の循環小数を分数で表せ。 (ア) 0.7 (イ) 3.72 (ウ) 1.216 10 (2) を小数で表したとき,小数第 100 位の数字を求めよ。 7

解決済み 回答数: 1
数学 高校生

場合の数の質問です 赤線で引いた所が分かりません どうして×3なんですか

346 基本 (全体) (・・・でない)の考えの利用 00000 大 中 小3個のさいころを投げるとき, 目の積が4の倍数になる場合は何通り あるか。 [東京女子大] 目の積が4の倍数」を考える正攻法でいくと, 意外と面倒。そこで, として考えると早い。ここで、目の積が4の倍数にならないのは、次の場合である。 目の積が4の倍数)=(全体)-(目の積が4の倍数でない) [1] 目の積が奇数 3つの目がすべて奇数 2つは奇数 [2] 目の積が偶数で 4の倍数でない→偶数の目は2または1つだけで、他の CHART 場合の数 目の出る場合の数の総数は 早道も考える (Aである) = (全体) (Aでない)の活用 6×6×6=216 (通り) 解答 目の積が4の倍数にならない場合には,次の場合がある。 [1] 目の積が奇数の場合 3つの目がすべて奇数のときで 3×3×3=27 (通り) [2] 目の積が偶数で, 4の倍数でない場合 積の法則 (6" と書いてい よい。) 数どうしの種は 1つでも偶数があれば 積は偶数になる。 3つのうち、2つの目が奇数で、残りの1つは2または64が入るとダメ。 の目であるから (32×2)×3=54 (通り) [1] [2] から 目の積が4の倍数にならない場合の数は 27+54=81 (通り) よって、目の積が4の倍数になる場合の数は 216-81=135 (通り) 目の積が偶数で4の倍数でない場合の考え方 和の法則 (全体)・・・でない) 基本 500円 で、 いも 指針 解答 上の解答の [2] は,次のようにして考えている。 検討 大中小のさいころの出た目を (大,中,小) と表すと, 3つの目の積が偶数で、4の倍数 にならない目の出方は,以下のような場合である。 (大,中,小) = (奇数, 奇数, 2 または 6 ) 3×3×2 通り よって =(奇数 2 または 6 奇数) 3×2×3 通り =(2または6, 奇数,奇数) 2×3×3 通り (32×2)×3通り 参考目の積が4の倍数になる場合の数を直接求めると,次のようになる。 (i) 3つの目がすべて偶数 33通り 2つの目が偶数で, 残り1つの目が奇数 (32×3)×3通り 合わせて 27+81 +27 (1つの目が4で、 残り2つの目が奇数 → → (1×32) ×3通り」 =135(通り) 練習 大,中,小3個のさいころを投げるとき,次の場合は何通りあるか。 ③9 (1) 目の積が3の倍数になる場合 (2)目の積が6の倍数になる場合 p.357 EX81 検

未解決 回答数: 1