学年

質問の種類

数学 中学生

この問題全部教えてください

10. 右の図のように,∠C=90°の直角三角形ABC で, ∠Bの二等分線と 辺ACとの交点をDとする。 点D から辺 AB へ垂線をひき、辺ABとの 交点をEとすると, BE=BC となる。 次の問に答えなさい。 NCB (対応順) E 【思考・判断・表現】(3点×2) (1)このことを証明するとき、どの三角形とどの三角形の合同をいえば よいですか。 B 'C 2つの角 (2) (1) を証明するときに使う三角形の合同条件を答えなさい。 11. 右の図のように,二等辺三角形ABC の長さの等しい辺 AB, ACの 中点をそれぞれM,Nとし, BN と CMとの交点をDとすると, △DBCは 二等辺三角形になる。このことを以下のように証明した。 」にあてはまるものを答えなさい。 【思考・判断・表現】 (2点×6) (証明) MBC と ANCB において, B 仮定から, AB=AC よって, MB=- 1/2AB NC=12121 MB= BC は共通 ア イ AB=AC で, 二等辺三角形の底角は等しいから, MBC=ウ ① ② ③ より [ I ]がそれぞれ等しいから, AMBC=ANCB したがって, <MCB= ∠ オ カ が等しいから, ADBCは二等辺三角形である。 12. 右の図の□ABCD で, BAD=78°,∠BEF=151°のとき, DFE の大きさを求めなさい。 【思考・判断・表現】 (3点) 13. ABCD の AB, DCの中点をそれぞれ M, Nとすれば, 四角形 MBND は平行四辺形になる。このことを証明しなさい。 【思考・判断・表現】 (6点) M D N A 月終) て 1180 97 83 180 QSC 1 2 178 180 151 151 29 C BE M N B

回答募集中 回答数: 0
数学 高校生

(ア)の問題でなぜkとおけるのですか?

(1) AB=8, を AB, AC で表せ。 V (2) AOAB において, OA=d, OB=1とする。 (ア) ∠O を2等分するベクトルは, ることを示せ。 (+) (kは実数 と表され (イ) OA=2,OB=3, AB=4 のとき, ∠Oの二等分線と ∠Aの外角の二等分 線の交点をPとする。 このとき,OP を d, 方で表せ。 指針 (1) 三角形の内心は、3つの内角の二等分線の交点である。 次の「角の二等分線の定理」を利用し、 まずAD を AB, AC で表す。 右図で AD が △ABCの∠Aの二等分線 ⇒ BD:DC=AB: AC 次に, △ABD と ∠Bの二等分線 BI に注目。 B' 基本26 (2)Oの二等分線と辺 ABの交点をDとして,まずOD を a, b で表す。 [別解] ひし形の対角線が内角を2等分することを利用する解法も考えられる。 つ まり, OA'=1, OB'=1となる点 A', B' をそれぞれ半直線 OA, OB 上にとっ てひし形 OA'CB' を作ると, 点Cは ∠Oの二等分線上にあることに注目する。 (イ)(ア)の結果を利用して, 「OPをa, で2通りに表し, 係数比較」の方針で。 → ACOA となる点Cをとり、(ア)の 点Pは∠Aの外角の二等分線上にある 結果を使うとAPはa, で表される。 OP = OA+APに注目。 AO (1)△ABCの∠Aの二等分線と辺BCの交点をDとすると Cの二等分線と辺 BD:DC=AB:AC=8:5 ABの交点をEとし 答 5AB + 8AC { AE: EB=5:7, よって AD= 13 8 56 また, BD=7• = であるから 13 13 56 AI: ID=BA:BD=8: =13:7 70-TO-HA 13 ゆえに 13 AI-202AD=122.5AB+8AC-1AB+/AC 13 20 20 13 4. (2)(ア∠Oの二等分線と辺 AB の交点をDとすると AD:DB=0A:OB=||:|| 3 =2:3 このことを利用して 角の二等分線の定理 を2回用いると求め られる。 角の二等分線の定理 を利用する解法。 0=-8 15 EI: IC= : 5 10 B 7 D もよい。 ゆえにOD= |6|0A+|a|OB aba 方 = lal+161 + a+b a b 16 ab される。 求めるベクトルは,t を t≠0 である実数としてOD と表 t=kとおくと, 求めるベクトルは |a|+|6| + 6 (kは実数 k≠0) 161 A a a tOD= a+ba 0

未解決 回答数: 1