学年

質問の種類

数学 高校生

下から4行目のbm+2がなぜ、b1.b3.b5となるのかわからないです。教えてください

重要 例題 数列{an}, {0} の一般項を an=3n-1,b=2" とする。 列{an} の項でもあるものを小さい方から並べて数列{c} を作るとき, の一般項を求めよ。 学ごとに意を元金 数の項のうち、数 数列{col 10g 重要 93, 基本 99 12. 指針 > 2つの等差数列の共通な項の問題(例題93)と同じようにとおすきなうとしてと 関係を調べるが,それだけでは{cm} の一般項を求めることができない。 そこで,数列{an}, {bn} の項を書き出してみると,次のようになる。 {az}:2,5,8, 11, 14, 17, 20, 23, 26, 29,32, {0}:2,4,8,16,32, Ci=b, C2=bs,C3= bs となっていることから, 数列{6} を基準として, 6m+1が数列{c.) の項となるかどうか, bm+2 が数列{a} の項となるかどうか… 見つける。 を順に調べ, 規則性を (1-b)n-bs 104 指 解答 α=2, b1=2であるから C1=2 (14b)(1-B 数列{an} の第1項が数列{6} の第m項に等しいとするとb-b8 3l-1=2m 0-(8-bb ゆえに bm+1=2m+1=2".2=(3-1) ・2 E="b 24 =3.21-2 ① よって, bm+1 は数列{an} の項ではない。 ①から bm+2=26m+1=3・4l-4 - <30-1 の形にならない。 =3(4-1)-1 ゆえに, bm+2 は数列{an} の項である。 したがって {C}:b1,63,65, ...... 数列{c} は公比 2 の等比数列で, C1=2 であるから Cn=2(22)"-1=22n-1 =41 などと答えてもよ い。

回答募集中 回答数: 0
数学 中学生

□1を教えてください 全くわかりません

A16 チョコレートが何個かと, それを入れるため の箱が何個かある。 1個の箱にチョコレートを30個 ずつ入れたところ, すべての箱にチョコレートを入 れてもチョコレートは22個余った。 そこで、1個の 箱にチョコレートを35個ずつ入れていったところ, 最後の箱はチョコレートが32個になった。 箱の個数 を求めなさい。 <18点〉 (R5 茨城) B1標準レベル の個数を個として 固数を x を使った 1 1次方程式の利用 ① ■リー代)+(プリン代) であることから, ■くる。 人数をπ人とし について,「300円 -とき」 「400円ず き」を,それぞれ 式で表す。 [ B2★★実戦レベル /100点 □ 4 1次方程式の利用 ある部活動でタオルを にした。 A店とB店でタオル 1 あったが, 30枚注文すると, A オルが1枚あたり定価の10%引 は注文したタオルのうちの1枚 がわかった。 また, タオル30 店のほうが1200円安かった。 求めなさい。 ヒント [ という 額より 料費が だね。 2 1次方程式の利用 ② (速さ) A17 花子さんは,学校の遠足で動物園に行った。 行きと帰りは同じ道を通り、帰りは途中にある公園 1 前の時に学校を出発 分 5 規則性を発見する 12 下の図のように、 100行 表に,次の 【規則】にしたがって 自然数が1から順に、1つのマ ている。ただし、表の中の を略してしたものである

未解決 回答数: 1
物理 高校生

大至急です!!!!!!!!!!!!!! 物理の実験なんですけど、この実験から何がわかって何を伝えればいいのかわかりません。助けてください! 3枚目の紙をまとめて提出します!

課題の背景 「物理基礎」 1学期力学分野 パフォーマンス(レポート) 課題 力学は, 物体にはたらく力に着目することによって, 現実に起こる現象を解明・予測する学問で す。一見すると予想と反する現象が観測されたとしても, 物体にはたらく力に基づいて注意深く考 察すると,一貫した原理・原則に従って現象が生じていることを確認できます。 また, 力学の考え 方 力のつりあいや作用・反作用の法則等) を用いると, 物体が静止するという何の変哲もない現 象から, 物体が持つ固有の性質(質量,体積,密度など) を知ることができるのです。 課題 右図に示すように, 台はかりの上に水の入ったビーカーを乗せて, ばねは かりに取り付けられた糸に物体をつるして水中に完全に沈めます。 このと き物体を沈める前と後の台はかりの示す値とばねはかりが示す値をそれぞ れ測定します。 上述の実験を同じ質量 (約115 ~ 120g 程度とする) で異なる 体積を持つ球形の物体 A, B, C (A: 直径4cmの球, B: 直径5cm の球, C:直径 6cmの球) の場合で行います。 ばねはかり 異なる体積の物体を沈めたときの測定結果から, 台はかりが示す値の変化 の規則性について、 以下の点に注意を払いつつ, 分かりやすくまとめてみま しょう。 必要であれば, 水の密度を1.0g/cm3として考えても良いです。 (1) 実験手順を簡潔に示して, 実験によって得られた測定値を正確に, 整理して表にまとめる。 (2) 台ばかりの値の変化の規則性について, 力のつりあいや作用・反作用の法則に基づいて解釈し て,分かりやすくまとめる。 台はかり 本課題を踏まえた発展的内容 上記の実験で見出された法則を活用して, 右図のような複雑な形状を持つ未 知の物体Xの密度 (水の密度よりも大きい) を測定する簡潔な方法を提案し てください。 また, 水の密度よりも小さい物体の密度を測定するにはどのよう にすれば良いでしょうか。 ■本課題における評価ポイント 課題レポートでは,科学的な思考/表現プロセスの全体が評価対象になるので、他の人にも伝わる ように,自分の考え方を, 言葉 数式・図表などを用いながら、 分かりやすく説明してください。 なお,本課題では考察部分の記述から主に次の点について評価します(ルーブリックを参照)。 力のつりあいと作用・反作用の法則を適切に使いこなしている。 • 台はかりが示す値の変化について, ばねはかりの値と関連づけるなど, 実験結果に基づいて科 学的に妥当性の高い考察を提示している。 • 各物体にはたらく力の矢印の作図をするなど, 図表や言葉数式などを用いて, 分かりやすく 書かれている。

回答募集中 回答数: 0
生物 高校生

生物です。 真ん中の分数の式の意味がよく分かりません。 教えてください!

検定され 個体 参考 遺伝子頻度の変化と規則性 A ハーディ・ワインベルグの法則 喫煙の生活においては、突然変異が、遺体的、遺伝子の流入 などによって、遺伝子頼度が変化することを学習したのにステーデルとドイ 主力は、遺伝子度が変化する要因のない生物の集団において、遺伝子組立さ 子型頻度の間に規則性があることを発見した。 親世代 親世代の卵 の精子 A pq P B 自然 実際の生 択がはたら どのように Ⅰ 次世代の遺伝子頻度 PA q a 対立遺 子頻度を 成立して うになっ るが, c の個体 次世代 の自然 対立遺伝子Aとαを含むある生物の集 団において、親世代のAの遺伝子頻度をか とし,αの遺伝子頻度をgとする(p+g = 1)。この集団内で自由に交配が行われ あるとき、子世代の遺伝子型頻度について, 表Iから、遺伝子型AAの頻度は(表Ⅰ ア), Aaの頻度は2pg (同表), aaの頻 度は2 (同表ウ)と表すことができる。 この とき,子世代の理論的な遺伝子頻度はどうなるだろうか。 g pg A a 表Iより, 子世代の対立遺伝子A の頻度は, 22+2pg 2p(p+g) 2 (p2 + 2pg + q2) 2(p+g)2 p p+q = p 第 15 れぞ s= となる。同様に子世代の対立遺伝子αの頻度はg となる。 つまり、子世代のA,αの遺伝 子頻度は,それぞれ親世代のA, aの遺伝子頻度と等しくなっており,遺伝子頻度が世代 をこえて変わらないことがわかる。 このように、ある条件を満たす生物の集団においては,世代をこえて遺伝子頻度が変わ らず遺伝子型頻度は関係する対立遺伝子の遺伝子頻度の積で表される。この法則を, ハーディ・ワインベルグの法則という。 ほうそく 0 ハーディ・ワインベルグの法則が成立するためには,次の5つの理想的な条件を満たし ていることが必要である。 ① 集団の大きさが十分に大きく,遺伝的浮動の影響を無視できる。 ② 注目する形質の間で自然選択がはたらいていない。 ③ 自由な交配で有性生殖をする。 ④ 突然変異が起こらない。 ⑤ 他の集団との間での個体の移入や移出, つまり他の集団との間の遺伝子の流入・流出 がない。 のと 能 と 20 て 25 30 あるという。 この法則が成立していて遺伝子頻度が変化しない遺伝子プールは,ハーディ・ワインベルグ平衡に へいこう 42 52 第1編 生物の進化 衣はいし口

回答募集中 回答数: 0