学年

質問の種類

数学 高校生

一番最初の式から分かりません教えてください🙏

Check 例題 284 自然数1,2, いろいろな数列の和 (1) 2 いろいろな数列 *** nについて,この中から異なる2つの自然数を選び, その積を計算する. このようにしてできる積の総和 Sm を求めよ. 考え方 たとえば, 3つの数a, b, cで考えてみると 舞台 T=ab+bc+ca が求める積の総和であり,さらに, (a+b+c)2=a+b2+c+2(ab+bc+ca) =a+b2+c+2T 2), T=(a+b+c)2- (a²+b²+c²)} ¿ts. この考え方を1, 2, 3, ......, nについて用いる. 123 n 1 2 ... n 6.2n 336 ... 3n 2 2 nn 2n3n... S=(1×2+1×3+... +1×n)+(2×3+2×4+…+2xn)+…+(n-1)×n 上の表の部分の和になっている.) 3つの数の場合と同様に考えると, (1+2+3++n)=(12+2+32++n²)+2S” であることがわかる. (1+2+3+…+n)=(12+2+32 +…+n)+2S,より, Sn= {(1+2+3+..+n)-(12+22+32+…+n2)} ( k: n \2 n k=1 11/11/12n(n+1)-1/n(n+1)(2n+1)] 考え方を参照 499 第8章 -n(n+1){3n(n+1)-2(2n+1)} 24 = 24 注 自然数1, 2,......,n (n-1)n(n+1)(3n+2) nに関して,この中の自然数んとその他の自然数との積の和は, k(1+2+......+n)k と表せる. n 1 2n(n+1)で くる。 これを用いると,2×Sn=_{k(1+2+ ・+nk2}となる. k=1 注》P=(x+1)(x+2)(x+3)×......×(x+n)の展開式はxのn次式となる. このとき x” の係数は 1, xn-1 の係数は 1+2+......+n= =1/2n(n+1)となる。 (x+n)のn個の( )について, では,x-2の係数はどのようにして求めればよいだろうか. Pを展開する際に,(x+1)(x+2), (x+3, )から数字を残り (n-2)個の()からxを選んで積を求めれば, 2個の x-2 の項を作ることができる. したがって, xn-2の係数の総和は、例題 284 と同様に考えればよい. つまり,x2の係数は -(n-1)n(n+1)(3n+2) となる. 24

回答募集中 回答数: 0
数学 高校生

サの部分がわからないので解説して頂きたいです。

000076 76 sin0, cos0 の2次式の最大・最小 a, b, cは正の定数とする。 0 2 の範囲で定義された2つの関数 S(0)=(1-√3a)sin' 0 +2asincos0+ (1+√3a)cos'0g(0)=bsinc0+b について (1) S(0) を a, sin20, cos20 を用いて表すと S(0) T lasin 20+ + ウ イ と変形できる。 よって,f(8) は のとき最大値 A = [エオ (2) g (0) の最小値が0であるとき, cの値の範囲は cサである。 このとき,さらにS(0) g(8) の最大値と最小値がそれぞれ一致するならば a+ キ 0= T ■ク のとき最小値ケ コαをとる。 b = セ + ソ タ a = ス チ である。 解答 (1) f(0) 変形すると Key 1 f(0)=(1-√3a) 1-cos20 2 +2a- sin20 2 +(1+√3a)1+ cos20 Key 2 2 = asin20+√3acos20+1= a(sin20+√3 cos20) +1 =2asin(20+ /25) +1 f(8) = (sin'0+cos'0) +a2sincos0 +3 a(cos20-sin³0) と変形し 2倍角の公式 2sincos0 = sin20 cos' 0 -sin^0= cos20 を代入してもよい。 π のとき ≤20+ 3 13 4 S より √3 2 α > 0 より ≤ sin(20+) 1 -√3a+1≦2asin (20+4 +1 ≦ 2a+10 よって, f(8) は 1 02 π π 20+ すなわち 0= 33 = 243 のとき最大値 24 +1 12 π 20+ (2)g(8)=0 のとき 60 より sinc0 = -1 0≧0 の範囲で sinc0 = -1 となる最小の8の値。 は すなわち 0 のとき 最小値1-3a 2 D bsinco = -b 3 c>0より, clo= となり 3 8₁ = 2 となるから 12c <10+(-1)=( よって,OSTの範囲で g (8) の最小値が0 となるとき c0 であるから, 3π 2c より c≥ 3 2 f(8) g (0) の最大値と最小値がそれぞれ一致するとき 2α+1=26 かつ 1-√34=0 これを解いて a= √3 3+2√3 b = 3 6 √3 3 三角関数 ( 最大値は (2)=6(sin+1) +1 = 26 攻略のカギ! Key 1 psin0 + gsincosd+rcos'0 は, sin 20, cos20 で表せ sind と costの2次式 f(0) = psin'0+gsindcosd+rcos' の最大・最小は, 2倍角の公式から得られ る下の3つの等式を利用して, f(0) を sin20 と cos20 の式で表してから、 合成して求める。 sin20 sincost= 2 sin² = 1-cos20 2 1+cos20 cos2 0 = 2 2 asin + bcos0 は,rsin (0+α)の形に合成せよ 35 (p.149)

回答募集中 回答数: 0
化学 高校生

(3)(4)がどうして回答のように計算していくのかよく分かりません

化学 問題Ⅱ 1 次の文章を読んで、設問(1)~(4)に答えよ。 --2 実験室では、 COCO る。 酸素は空気中に体積比で約21% 存在し、工業的には液体空気の分留で得られる。 塩素酸カリウムと酸化マンガン (NV)の混合物を加熱することで発生さ Okay +30= 水上置換で集める。このとき、酸化マンガン(Ⅳ)はあ としてはたらいてい 酸素 O は水にわずかに溶け、次のような溶解平衡が成り立つ。 O2(気)O2aq KHclc 0007 気相中のOのモル濃度をG [mol/L] 水に溶けているQ』のモル濃度をC[mol/L] とすると,平衡状態においては次式が成り立つ。 なお、 比例定数 Kは温度が一定なら、 一定の値をとる。 C D RT CEP RT 容積可変の密閉容器を用い, 温度を常に33℃に保って, 次の実験1.2を行った。 ただし、 気体は理想気体の状態方程式に従うものとし, 33℃における水の飽和蒸気圧 は 5.0 × 10° Pa とする。 また, どの平衡状態でも液体の水が存在し, その体積変化は 無視できるものとする。 【実験1】 0.100molのO2 をこの密閉容器に入れた。 容器内の圧力を1.00 × 10 Pa にしたところ, 容器内の気体の体積はV[L] になった。 この0の入った容 器に十分な量の水を入れ, 容器内の圧力を1.00 × 10 Pa に保った。 平衡状 態に達したとき, 容器内の気体の体積は0.80V [L]になった。 【実験2】 実験1に続けて, 容器内の圧力が2.00 × 10 Pa になるように圧縮すると. 新たな平衡状態に達した。 設問(1) 下線 ①の反応を化学反応式で記せ。 また, 空欄 適切な語句を記せ。 →あ にあてはまる最も よくいい K= G また,気相中の0』の分圧をP [Pa]. 気体定数を R [Pa・L/(K・mol)〕, 絶対温度を T〔K〕とすると,C は次のように表される。P=GR・T 設問(2) 空欄 い に入る適切な式を K, P, R, Tを用いて記せ。 また, 下線 ② で示される法則の名称を記せ。 設問 (3) 実験1で, 水に溶けている酸素の物質量は何molか。 有効数字2桁で記せ。 G= 6:上 RT C= RT 設問(4) 実験2で 水に溶けている酸素の物質量は何molか。 有効数字2桁で記せ。 また、このときの気体の体積をV'[L] とすると, の値を有効数字2桁で V' V これは温度一定のもとで,一定量の水に溶ける気体の物質量と, 気相中のその気 ヘンリーの法則 体の分圧の関係を示している。 記せ。

回答募集中 回答数: 0
数学 高校生

問題の下の解説の「x,yの2次式の因数分解」 のところで、展開をしなくていいのは、 展開した式を入れ替えても答えは同じっていう 性質があるからですか?

2 因数分解/2次式 つぎの式を因数分解せよ. (酪農学園大酪農, 環境) (北海学園大工) (東北学院大・文系) (1) (a-b+c-1) (a-1)-bc (2) 4.2-13zy+10y2 +18æ-27g+18 (3)(x+2y) (æ-y)+3y-1 因数分解では最低次の文字について整理する 2文字以上が現れる式の因数分解の原則は,最低次 その文字 (複数あるときはどれか1つの文字) について整理することである. 一般に,次数の低い式の方 が因数分解しやすい. 仕 解答 xyの2次式の因数分解 原則に従えば,xか」について整理するところであるが,(3)において (x+2y) (x-y) を展開して整理するのはソンである. 「x+2y」 「x-y」 を用いて解答のように「たす きがけ」をすればよい。 (2)も, x,yの2次式の部分を因数分解すれば同様にできる(別解) 慣習 因数分解せよ,という問題では,特に指示がない限り, 係数が有理数の範囲で因数分解する. (2) (3) ((+23)(x-3) + 33-17 (1) まずcについて整理することにより, 与式= {c(a-1)+(a-b-1) (a-1)}-bc ←与式はαについては2次だが, b やcについては1次. =(a-b-1)c+(a-b-1) (a-1)=(a-b-1)(a+c-1) (2) まずェについて整理することにより, (-a+b+1)(-a-c+Uod 与式=42-(13y-18)x + (10y2-27y+18) =4x²-(13y-18)x+(2y=3) (5y=6)... x= ={x-(2y-3)}{4m-(5y-6)} 2 × ①+56 7-2 →27 ←1 -(2y-3) × -(13y-18) =(x-2y+3)(4x-5y+6) 14 -(5y-6) 注 ① におけるたすきがけで, 試行錯誤するのを避けるためには, ①= {ar-(2y-3)}{bx-(5y-6)} とおき, 展開して係数比較すればよい. æの係数は (yは定数と見る), -{(5a+26)y- (6α+36)} となり, ー (13y-18) と一致するので 5α+26=13,6a+36=18. これを解いて α= 1, 6=4となる. (3) 与式={(x+2y)-1}{(x-y)+1} てんか =(x+2y-1)(x-y+1) 【別解】 (2) [x,yの2次式の部分をまず因数分解して, (3) と同様に解くと] であるから, 4.2-13ry+10y2=(x-2y) (4π-5y) 与式= (x-2y) (4-5y) + (18-27y) +18 このときの係数も一致する. x+2yx-13y x-y →-13 12--13 0 4 -5 ={(x-2y)+3}{(4x-5y)+6} =(x-2y+3)(4x-5y+6) 2 演習題(解答はp.22) (1) (ry) (x+y-z (z+2y) を因数分解せよ. (2) 3a+26+αb +6 を因数分解すると d)( x-2y 3 4x-5y 6 × -18x-27y 13) (48 (北海道薬大) である.また, (1) である. (3)は,例題 (2) と同様 (岐阜聖徳学園大) に2通りのやり方があ (静岡産大) . ry+xz+y2+yz+3 +5y+2z+6 を因数分解すると (3) 8-18y2+10x+21y-3 を因数分解せよ.

回答募集中 回答数: 0
化学 高校生

(1)の解説に疑問があります。 Li0.4CoO2にはOが2個あるのに、青線部では2が掛けられていないです。モル質量を求める式を解いてみたのですが等号が成立しません。これは問題集の表記漏れですかね、、?

350. 実用リチウムイオン電池 満充電の状態の電池から一定の電流を何時間取り出すこ とができるかを示す量を放電容量といい, 1mAの電流を1時間取り出すことができる 放電容量は1mAh である。 リチウムイオン電池は,放電容量の大きな二次電池であり, 正極活物質には, コバルト酸リチウム LiCoO2 の結晶中から一部の Li+ が脱離した Lit-xCoO2(0<x<0.5) が用いられている。 リチウムイオン電池を放電・充電すると,正 極では,次の変化がおこる。 正極: Lit-x CoO2+xLi++xe- 放電 `充電 LiCoO20H 09H 実用リチウムイオン電池では、満充電の状態でもxが0.5より大きくならないように つくられている。 これを超えて過充電を行うと, Li+ が脱離しすぎることにより, Lix CoO2がO2 の発生を伴い LiCoO2 と Co3O4 へと分解し,放電容量が減少してし まう。いま, 0.25mol の Lix CoO2 を正極活物質とした, 電圧 3.7V, 放電容量が 2500mAh の実用リチウムイオン電池をLix CoO2のx=0の状態からxが最大になる まで充電した後, 8.00 ×10 -1Aの一定電流で2時間放電した。 Ha (S) (1) 下線部①で, Li-xCoO2 が Lio.4 CoO2 のときの分解反応の化学反応式を示せ。 また, 10.0g の Lio.4CoO2 の30%が分解するとき, 発生するO2 の物質量を有効数字2桁で示せ。 (2) 下線部②の電池の正極活物質 Li CoO2 がとる最大のxを有効数字2桁で示せ。 -x (3) 下線部③ のとき, 正極に取り込んだ Li+ の物質量を有効数字2桁で示せ。 (4)現在,各航空会社では, ワット時定格量160Wh を超えるモバイルバッテリーの飛 行機内のもち込みを禁止している。 下線部②の電池8つを並列につないだモバイルバ ッテリーMのワット時定格量 〔Wh] を求め, M を機内にもち込めるかを判断せよ。た だしワット時定格量 〔Wh] =電力 [W] × 時間 [h], 電力 〔W〕 =電流 [A] ×電圧[V] で 100H (21 大阪大 改) ある。

回答募集中 回答数: 0