学年

質問の種類

数学 高校生

青チャートI Aです この式変形が、左辺の言っていることはわかるのですが、それをどうしたら右辺になったのかわかりません

62 重要 例題 170 曲面上の最短距離 右の図の直円錐で,Hは円の中心線分ABは直径, 本面 OH は円に垂直で, OA = a, sin0= 1/23 とする。 点Pが母線 OB上にあり, PB= とするとき, a 3 点Aからこの直円錐の側面を通って点Pに至る最短経 路の長さを求めよ。 241038 解答 AB=2r とすると, △OAH で, AH = r, ∠OHA=90°, 1/3であるから=1 sin0= a 側面を直線OA で切り開いた展開図 は、図のような, 中心 0, 半径 OA=αの扇形である。 中心角をxとすると, 図の弧 ABA' の長さについて 2ла• 基本 149 指針▷ 直円錐の側面は曲面であるから, そのままでは最短経路は考えにくい。そこで,曲面を広 げる,つまり 展開図で考える。 側面の展開図は扇形となる。 なお,平面上の2点間を結ぶ最短の経路は、2点を結ぶ線分である。 x 360° = =2πr であるから A a 3 217 a• 2 9 B PSDOCS A' 14814 HAMAS USA.9 X a VMIJA 00000 HO13-JOHA SUSHED THE „HƆA, TƆA ---3---- JOHD AMI EV H r x=360°=360° 1/3=120° a 3 a 3 ここで, 求める最短経路の長さは、図の線分 APの長さである 2点S, T を結ぶ最短の経路 から、△OAP において, 余弦定理により, は、2点を結ぶ線分 ST AP2=OA2+OP²-20A・OP cos 60° =x²+1 + (-1/a)²-2a.. AP>0であるから、求める最短経路の長さは7a S.S S O YB LIGE A(A) AVであ MA 弧ABA'の長さは、底面の 円の円周に等しい。 T

回答募集中 回答数: 0
数学 高校生

解き方全てわからないです、、 どうか教えてください!

X3/16 重要 例題 170 曲面上の最短距離 1 とする。 右の図の直円錐で, Hは円の中心,線分 AB は直径, sin 0= 3 OH は円に垂直で, OA=a, A B=1 とするとき, B 点Pが母線 OB 上にあり, PB= 基本149 点Aからこの直円錐の側面を通って点Pに至る最短経 路の長さを求めよ。 指針 直円錐の側面は曲面であるから, そのままでは最短経路は考えにくい。 そこで、曲面を広 側面の展開図は扇形となる。 → げる つまり 展開図で考える。 なお、平面上の2点間を結ぶ最短の経路は, 2点を結ぶ線分である。 解答 AB=2r とすると,△OAH で, AH =r, ∠OHA = 90°, r_1 sin= であるから a 3 B 側面を直線OA で切り開いた展開図 B は、図のような, 中心 0, 半径 PERTHO A' する正 OA=αの扇形である。 x A' (A) A 中心角をxとすると, 図の弧 ABA' の長さについて 0 DEAR x 2ла• =2πr DICD 360° 弧ABA' の長さは、底面の 円Hの円周に等しい。 614 GACY r_1 10 2017-1234 であるから x=360° -=360°• - 0°• 1/3 = =120° a 1 ① ここで,求める最短経路の長さは、図の線分 APの長さである 2点S, T を結ぶ最短の経路 から、△OAP において, 余弦定理により, AP2 = OA2+OP²-20A ・OP cos 60° は2点を結ぶ線分 ST 2 = a ² + ( ² = a)² - ²a + ²/3 a ² =²2² = ²/1 a ² 2 1 BBC 2a. 7 3 ・a・ 9 AP>0であるから 求める最短経路の長さは √7 S a 練習 1辺の長さがαの正四面体OABC において, 辺AB, 170 BC, OC 上にそれぞれ点P, Q, R をとる。頂点Oから (3) P, Q, R の順に3点を通り,頂点 0 長さを求め ?62 A 15/0₂ a 3 H

回答募集中 回答数: 0