学年

質問の種類

数学 高校生

92の(3)のしていることがよくわからないです。 誰か詳しく教えてほしいです。

のグラフは,y=3x²のグラフをx軸方向 | だけ平行移動し,x軸に関して対称に折り返し,さらにy軸方向に だけ平行移動したものである。 (慶應 91 放物線y=ax2+bx+5 を原点に関して対称移動し,さらにy軸方向に c け平行移動したところ,この放物線は点 (2 3 でx軸に接し, 点 2' を通るという。このときのa, bおよびcの値を求めよ。 1 2' (北海道工 02 放物線y=ax2 をAとする。 (1) A をx軸方向に -3だけ平行移動し,y 軸に関して対称移動し,さら 軸方向に3だけ平行移動した放物線をBとする。 B の方程式を求め, A Bの位置関係を調べよ。 (2) Ay軸方向に ―2だけ平行移動し,x軸に関して対称移動し,さら 軸方向に2だけ平行移動した放物線をCとする。 Cの方程式を求め, Cの位置関係を調べよ。 (3) A を点 (32) に関して対称移動した放物線の方程式を求めよ。 3 放物線y=x2-4x-5と直線x=1 に関して対称な放物線の方程式を求 また,直線y=2に関して対称な放物線の方程式を求めよ。 ■ 次の問いに答えよ。 1) 2次関数y=ax2+bx+cのグラフをx軸に関して対称移動し、さら をx軸方向に -1,y 軸方向に3だけ平行移動したところ y=2x2の が得られた。このとき,a= b=1,c=である。 2) 2次関数y=px²+gx+rのグラフの頂点は (3,-8) であるとする とき,g=p,r= さらに,y<0 となるx である。 範囲がk<x<k+4 であるとすれば,k=,p=である。 (センター nt 93 対称移動により頂点が移る点を求めて, 放物線の方程式を求める。 94y0 となるxの範囲がk<x<k+4であるから、グラフは下に凸でグラフと 有点はx=k, k+4である。

回答募集中 回答数: 0
数学 高校生

93の(2)教えてほしいです。 なぜ最後-をつけるのでしょうか? 緑の線で囲ったとこです。

91 放物線y=ax²+bx+5 を原点に関して対称移動し,さらにy軸方向にcだ け平行移動したところ。この放物線は点 ( 22.0)でx軸に接し、点 ( 12.4 を通るという。 このときのα bおよびcの値を求めよ。 (北海道工大) 92 放物線y=ax²をAとする。 01Aをx軸方向に-3だけ平行移動し,y軸に関して対称移動し、さらにx 軸方向に3だけ平行移動した放物線をBとする。 B の方程式を求め, A と Bの位置関係を調べよ。 (2) Ay軸方向に2だけ平行移動し,x軸に関して対称移動し,さらにy 軸方向に2だけ平行移動した放物線をCとする。 C の方程式を求め,Aと Cの位置関係を調べよ。 (3) を点 (32) に関して対称移動した放物線の方程式を求めよ。 * 93 放物線y=x2-4x-5と直線x=1に関して対称な放物線の方程式を求めよ また、直線y=2 に関して対称な放物線の方程式を求めよ。 (名城大) 94 次の問いに答えよ。 (1) 2次関数y=ax2+bx+cのグラフをx軸に関して対称移動し、さらにそれ をx軸方向に -1,y 軸方向に3だけ平行移動したところ y=2x2のグラフ が得られた。このとき,a=b=1,c=である。 (2) 2次関数y=px2+gx+rのグラフの頂点は(3, -8) であるとする。 こ とき,g=p,r=カーである。さらに, y <0 となるxの値 範囲がk<x<k+4 であるとすれば,k=-= である。 (センター試験・ int 93 対称移動により頂点が移る点を求めて, 放物線の方程式を求める。 94 y <0 となるxの範囲がk<x<k+4 であるから, グラフは下に凸でグラフとx軸と 有点はx=k, k+4である。

回答募集中 回答数: 0