学年

質問の種類

数学 高校生

⑶の最後のシャーペンで囲ったところがなぜそうなるのかわかりません

56 第1章 数列の極限 例題21 a1=4, an+1= 6 (n=1, 2,3,......) で定義される数列{an} について,次の問いに答えよ. (1) 1<a≦4 を示せ. (3) limam を求めよ. 1140 考え方 (1) 数学的帰納法を使う. n=kのとき, 1 <a≦4 が成り立つと仮定して n=k+1 のときも成り立つことを示す. 数学的帰納法と極限 an²+5 6 (2)(1)で示した 1<a,≦4 を利用できるように,Qn+1−1=ℓ 解答 (1) 1<a, ≤4 ・・ ① とおく . (I) n=1のとき, α=4 より ① は成り立つ. (II)n=kのとき, ① が成り立つと仮定すると.. 1<a≦4 より る. (3)(2)で示した不等式を利用して, 例題 17 (p.47) と同様にして極限値を求めればよい。 数学的帰納法で示す。 (2) an+1−1= 21 つまり, 1<ak+1 <4 6 EV EV したがって,n=k+1 のときも ① は成り立つ . よって, (I), (ⅡI)より すべての自然数nについて 1 <a≦4 が成り立つ. 6 an+1 6 よって, 1²+5__a²+5_4²+5 6 6 6 an²+5 VII 6~1 an²-1 6 = (a + 1)(α =1) ここで、1<a≦4より, an+14+1 (2) an+1−1≦22 (an-1)を示せ . 5 6 6 OHA この形つくりたいから (an+1)の方もってくる (an+1) (an-1) ≤=(an — 1) ww 5 an+1−1≤ (an-1) ***** ….... ② (0) a2+5_1 の右辺を変形す 仮定した式について 1.各辺を2乗する。 2.各辺に5を加え 3.各辺を6で割る. 2150 PAR an+1−1 と an-1の 10 関係式にする. 因数分解して次数 下げるのと同時に (a-1)を作る. 各辺に1を加えて で割る. 0.0.9 an-1>0 >1より,

未解決 回答数: 1
英語 高校生

学校を休んでしまい分かりません💦 教えて下さい🙇‍♀️ 答えは持っていません

EXERCISES a ( )内の語句に関係代名詞を加えて並べかえ, 全文を書きなさい。 (1) This is (be/aplant/must) watered every day.monme plant which must be (2) The architect (city hall / designed / is / our) my cousin. is cityhall who our clesigned (3) (speak / people / English/ don't ) can't apply for this job. people don't speak which English. 2 日本語に合うように,( )に適語を入れなさい。 (1) 私たちが発明した製品は画期的だ。 The product ( ) ( 関係代名詞 ① (4) You (eat/contain/vegetables / should) a lot of vitamins. ) ( (2) 彼は私が長い間知っている少年だ。 He is a boy ( ) ( PA ) is groundbreaking. )()( (3) その先生はしばしば私が答えられない質問をしてくる。 The teacher often asks me questions ( ) ( (4) 私のおじが買った車はハイブリッドです。 The car ) ( ) ( ) for a long time. ) ( Pid20 (2)状況 久しぶりのクラス会。 だれだか思い出せなくて・・・。 What is the name (the man / just / in / who / of / came / which ) ? A ) is a hybrid. 3 与えられた状況に合うように ( )内の語句を並べかえ, 全文を書きなさい。 ただし、不要な語 句が1つずつ含まれています。 zdrow trabi2919 9 odw Ei soov at berjaly I G AB (1)状況 すてきな時計をしているね,と友人に言われて…..。 f This is (bought / my / me / the watch / father/ who) two years ago. (3)状況 スペイン語の学習が進んできて、難しいことにも挑戦したくなりました。 I want to read (in / that / a novel / Spanish/who / written / is ). B [ ]内の語句を参考にして, ~, ...に自由に語句を入れ、 オリジナルの英文をつくりなさい。 AB (1) 私には~が得意な友だちがいる。 [who/good] (②)〜(人)は私が昨日・・・した人に似ている。 [look like ]

回答募集中 回答数: 0
数学 高校生

丸で囲った3ってなぜくるのですか? またどこの3ですか?

132 をx 意。 さみうちの原理 [3x] (2) lim(3*+5x) / 「次の極限値を求めよ。 ただし, [x]はxを超えない最大の整数を表す。 > 極限が直接求めにくい場合は、はさみうちの原理 (p.21852) の利用を考える。 x (1) n≦x<n+1 (nは整数)のとき [x]=n すなわち []≦x<[x]+1 よって [3x]≧3x<[3x]+1 3< a lim 100 このとき X→∞ よって X→∞ (ただしlim f(x)=limg(x)) となるf(x), g(x) を作り出す。 なお、記号[]はガウ みうちの原理を利用する。 (2) スが最大の項でくくり出すと (359(20) +1-1(20) +12 (2) の極限と ² { ( ²³ ) * + 1} ²³ の極限を同時に考えていくのは複雑である。 そこで、 はさ CHART 求めにくい極限 不等式利用ではさみうち [3x] x 答 | | 不等式 [3x]≧3x<[3x] +1が成り立つ。x>0のとき,各辺 | [3x] 1 をxで割ると ¥3 x x 1 [3x] +1 から 3 [3x] x この式を利用してf(x) [3x]≧ g(x)/ x X10 x→∞であるから x> 1 すなわち0< − <1と考えてよい。 はさみからのすからどう lim X→∞ .. X>1>0 [3x] =3であるから 2 (3¹+5³) * = [5*{( ³ )* +1}} * = 5{(³)*+1}* *th5_1<{( ³ )* +1} * < ( ³ ) ** +1 lim p.218 基本事項 5. 基本105 ここで, 3-1 [3x] x =3 +11であるからパー =1 lim(3+5)* - lim 5{()*+1}*-5-1 =5.1=5 はさみうちの原理 f(x)=(x)=g(x) で limf(x)=limg(x)=α x→∞であるから,x>10<<1と考えてよい。 x {( ²³ ) * + ¹}* < { ( ³ ) * + ¹} * < { ( ³ ) *+1}...(*) <A>1028, a<b2518 A°A°である。 x-00 ならば limh(x)=α などわかんなのが 225 [I][2A] 次の極限値を求めよ。ただし、[ ]はガウス記号を表す。 [(²³)*+ ( ²³ ) } * 底が最大の項5*でくくり 出す。 /31 * " + 1>1 であるから, (*)が成り立つ。 4章 16 関数の極限 (p.231 EX100

回答募集中 回答数: 0