学年

質問の種類

数学 高校生

こういう問題で、f(x)というものをよく見かけるのですが、これはどのような場合に用いるのでしょうか?解答をかくときに毎回意味が分からなかったので、教えてもらえると嬉しいです。

頻出 ★★☆☆ こを求めよ。 y=ax2+bx+6 105 絶対不等式 [1] 不等式の解の存在 ★★☆☆ (1) すべての実数xについて, 2次不等式+2kx-3k+4>0が成り立 つような定数kの値の範囲を求めよ。 Acid (2) 2次不等式 x-kx+k+3<0 を満たす実数x が存在するような定 数kの値の範囲を求めよ。 ReAction 不等式は,グラフと x 軸の位置関係を考えよ 例題98 3 x 4+ =ax2+bx+6 このプロセス 「条件の言い換え (1) すべてのxについて (1) (2) y= ⇒y= のグラフがx軸より上側にある。 とx軸の共有点は [ 3 (2)y= のグラフがx軸より下側にある 部分が存在する。 + a B 9 y= とx軸の共有点は 2次関数と2次不等式 y=f(x) のグラフは下に 凸の放物線であり、 次の ようになればよい。 V y=f(x) D<0 のグラフ ■, x軸と (1) f(x)=x2+2kx-3k +4 とおく。 - 0)で交 例題 93 すべての実数x について f(x)>0 が成り立つのは, y=f(x)のグラフがx軸と共有点をもたないときである。 よって, f(x) = 0 の判別式をDとすると D< 0 を満たす D ゆえに 1=k-(-3k+4)=k+3k-4 4 グラフ = (k+4)(k-1)0 軸と したがって -4<k<1 0) で交 (2) f(x)=x-kx+k+3 とおく。 f(x) <0 を満たす実数x が存在するのは,y=f(x)の 例題 グラフがx軸と異なる2点で交わるときである。 y=f(x) のグラフは下に 凸の放物線であり、 次の ようになればよい。 \y=f(x) 93 よって,f(x) = 0 の判別式をDとすると D> 0 たす ゆえに D=(-k)2-4(k+3)=k-4k-12 =(k+2)(k-6) > 0 したがって k<-2,6<h B) Point... 絶対不等式 A x D>0 例題 105 (1) では,与えられた不等式 x2+2kx-3k+40 から, 機械的に D> 0 とし てしまう誤りが多い。 3) 必ず「不等式の条件」 を 「グラフの条件」 に言い換えてから, 判別式の条件を考えるよ うにする。 105(1) すべての実数xについて, 2次不等式 x+kx+2k+50 が成り立つよ うな定数kの値の範囲を求めよ。 (2) 2次不等式 2x²-3kx+4k+2 <0 を満たす実数x が存在するような定数 んの値の範囲を求めよ。 191 p.220 問題105

解決済み 回答数: 1
数学 高校生

数検準一級です。緑のマーカーのところがわかりません。 なぜ八分の七になるのでしょうか? 教えていただきたいです。

問題 7 解答 -21 [解説 =tとすると 23r+1+3・7_2-3+1+3.7~ 5・23-7-1 5・2-34-7-1-1 2. 787-8 +3 7をかける 分母と分子に 準1級2次 第4回 実用数学技能検定 P.86 ~P.91 問題 1 解答 問題 2 (B)=(1.1) (=5+3/31. (+3√315-30 -5-3/3) [解答 (1)g= 1 4√√6 -5-3√31 (-5-334-5+34) b=- √6 3 (2) a= b=112 5- 解説 [解説 のときであり <1より a+β=p, aβ=gとおくと, 条件は p+2q=4 …① 2. 2x+1+37* (2) p2-q=3...② +3 8 -= lim- と表される。 ① + 2x②より lim 5・23-7-1100 5 2p2+p-10-0 (1) さいころを1回振るとき、 2以下の目が出る 確率は1/28-1/2である。 4 Xは二項分布B 32.4 に従うので、Xの平均 と分散は これを解いて 3 1 -- 5 E(X)=32.1=8.V(X)=32.1.0/ -= 6 4 p=2. 2 7 =-21 指数関数の極限 a>1のとき lima=∞, lima=0~ 200 0<a<1のとき limα = 0. lim a=00 00 8 MOGAN 5 13 ②よりp=2のときg=1,p=-1のとき== p=2.g=1のとき,解と係数の関係よりα,B は次の2次方程式の2解である。 t2-2t+1=0 これを解くとt=1 (重解)より, α=β=1 p=-- 5 13 1/12g=1/2のときα.Bは次の2次方程式 の2解である。 4 513 t+= t+==0 2' -5±3√3i これを解くとt= より 4 -5±3√3i -53√3i α=- B= (複号同順) 4 4 以上より求める組は (-5+3/31-5-3/3). (α,β) = (1,1) 4 (-5-3√31-5+3√31) 4 Y=aX+bの平均と分散は E(Y) = aE(X) + b = 8a + b. V(Y) = α-V(X)=6² より 8a+b=0.6m²=1 これを解いてa= 4v6 b= √√6 3 二項分布の平均, 分散、標準偏差 確率変数X が二項分布B (n. p)に従うとき、 q=1-pとすると E(X)=np. V(X)=npq.(X)=√npq 1次式の平均、 分散、標準偏差 Xを確率変数とし. α, bを定数とするとき E(aX+b)=aF(X) +6 V(aX+b)=α-V(X) (ax+b)=lalo(x) (2)(1)よりm=E(X)=8. a=√V(X)=√6である。 Y=aX+bの平均と標準偏差は E(Y)=8a+b. (Y) = lala(x)=√6a 第4回 3

解決済み 回答数: 1