学年

質問の種類

数学 高校生

微分についての質問です。一枚目の写真で青マーカーを引いたところには、「三次不等式はグラフを利用して求める。極値を求める必要はない。」とありますが、例題212.213では極値を出して解いている気がします。 ・なぜ例題212.213では極値を出して、例題216では極値を出して... 続きを読む

2 406 第6章 微分法改 練習 [216] **** 7956 く 50 785 2210 196 例題 216 三角不等式 **** cos 30 + cos 20+ cos >0 を満たす0の値の範囲を求めよ.ただし, 0≦02 考え方 解答 とする. 例題 212(p.402) と同様にして3次関数のグラフとx軸の位置関係を考える. まず cosa=t とおき,tの3次不等式を作る cost とおくと,002πより、 また, cos30=4cos0-3cos0=4t-3t cos 20=2 cos 0-1=2t2-1 4t3+2t-2t-1>0 したがって, 与式は, (4t-3t) + (2-1) +t>0 2t2(2t+1)-(2t+1)>0 (2t+1)(2-1)>0 ...... ② (2t+1)(2-1)= 0 とすると, tの値の範囲に注意 与式の左辺を cosで 統一する。そのとき 倍角,2倍角の公式を 利用する. ((p.269 参照) 組み合わせを考えて, 因数分解する。 [解] Commen ここ こで, 2 線が一致 200 とし, 線をも この √2 1 1 t=- 0 2' √2 2 y=4t+2t-2t-1 のグラフは, 右の図のようになる. したがって、②の解は、 ①より RD 3次不等式はグラフを 利用して考える. 極値 を求める必要はない。 30 1 <t≦1 √2 2√2 よって,t=cos 0,0≦02 より 0≤0< 単位円を利用して8の 範囲を求める. て π 第3,4象限の解と第2, 2 3 147 4 1 √2- 1象限の解は,それぞ 例 0 5 << 27 << れx軸に関して対称 10 1 x 43 7 3π 1 4π 注〉和積の公式を用いて次のように解くこともできる. (p.274 参照) ( cos30 + cos 0) + cos20>0 2 cos 20 cos 0+ cos 20>0 cos 20 (2 cos 0+1)>0 (2cos'0-1)(2cos0+1)>0 ここで, cosa=t とおくと, cosA+ cosB=2cos- A+B A-B COS 2 2 (2t2-1)(2t+1)>0 あとは、例題216と同様にして解けばよい. tan 20 + tan00 を満たす 0 の値の範囲を求めよ。ただし,0≦02 とする. 次

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

なぜ積分したらこの形になるんですか?これだと、マイナスで括れば元の形に戻ると思うんですが、、青の部分はこうなるのではないのですか??違いがわからないです

150 絶対値記号のついた定積分の代謝会 次の定積分を求めよ. (1) S√ √x-3dx (2) Clsin2xldx 3定積分 329 **** 考え方 絶対値記号をはずす. そのとき, xの値の範囲により、積分区間を分ける. 絶対値記 号をはずすポイントは、記号の中の式を0以下と0以上で場合分けすることである. √x+3(x3)←x-3≦0 (0以下) (1)√x-3 √x-3 (x≧3) ←x-30 (0以上) Solx-3ldx=S-x+3dx+x-3dx であるから, (2)0≦x≦ より 0≦2x≦2 sin 2x TC 10≦x≦ ← 0≤2x≤ したがって, |sin2x|= 200 (0以上) sin 2x (SIS) π 2 ← 2 2 (0以下) 「解答 (1) (2) つまり、Solsin2x|dx= sinxdx+S(sin2x)dxS'=S+S Svlx-3ldx=S-x+3dx+Svx-3dx =[2/3(x+33 + [1/(x-3)2 3 + ·32 376 ||-3|= x+3(x≦3) lx-3 (x≥3) YA y=√x-31 √3 y=vx3 第5章 0 3 y=v-x+3 |sin2x|= sin2x (0≤x≤7) -sin 2x(SIS) y=|sin2x| =4√3 π Sisin2x|dx= sin2xdx+S =S sin2xdx + S (- sin2x)dx Jogt =[12/cos2x]+[/2/cos == =-1/12 (1-1)+1/2(11) 2x ya 1=2 Focus 積分区間を分けて、絶対値記号をはずせ (記号の中の式を0以下と0以上で場合分け) a) 0 π TX 2 y=sin2xy=-sin 2x グラフはx軸で折り返した グラフを利用しよう.

未解決 回答数: 1
数学 高校生

高次方程式についての質問です。青のマーカーを引いたところと、紫のアンダーラインをつけたところが何を言ってるのかさっぱりわかりません。紫のところは何故そうなるのか分からず、青のマーカーはこの文で何を伝えたいのか、文章の意味すらよくわかりません。どちらか片方だけとかでもいいので... 続きを読む

* り 改) 余り x) を とき Think 例題 53 割られる式の決定 3 高次方程式 115 **** x'+2x+3で割ると x+4余り, x2+2で割ると1余るような多項式 P(x) で,次数が最小のものを求めよ. 考え方 P(x) を4次式 (x+2x+3)(x+2) で割った余り R(x)は3次以下の式である. 解答 P(x) = (x2+2x+3)(x+2) (商)+R(x) m +2x+3で割るとx+2x+3で割ると、余りは、 割り切れる. 1次以下の多項式 P(x) をx+2x+3で割った余りと一致する. P(x) を4次式(x2+2x+3)(x+2)で割ったときの商を Q(x)余りをR(x) とすると (x)=(x+2x+3)(x2+2)Q(x)+R(x) ・・・・・・ ① と表せ,R(x)は3次以下の式である。 また、①において,P(x) をx+2x+3で割ると, (x+2x+3)(x+2)Q(x)はx+2x+3で割り切れるから, P(x)をx'+2x+3で割った余りx+4は, R(x) をx'+2x+3で割った余りと一致する。 つまり、R(x)=(x+2x+3)(ax + b) + x +4 ...... ② とおける. 同様に,P(x) を x+2で割った余りが-1であるから, R(x)=(x+2)(cx+d-1 ...... ③とおける. ②③より, (x2+2x+3)(ax+b)+x+4=(x+2)(cx+d)-1 が成立し, 左辺と右辺をxの降べきの順に整理すると ax+(2a+b)x2 + (3a +26+1)x +36 +4 =cx'+dx2+2cx+2d-1 これはxの恒等式であるから, n a=c, 2a+b= d, 3a+26+1=2c, 36+4=2d-1 これらを a b について解くと, a=1, b=-1 よって,②より R(x)=(x2+2x+3)(x-1)+x+ 4 = x + x+2x + 1 ①より P(x)=(x2+2x+3)(x+2)Q(x)+x+x+2x + 1 そして,P(x)の次数が最小になるのは Q(x) =0 のとき である. Focus 練習 53 **** よって、 求める多項式は, P(x)=x+x'+2x+1 割る式が4次式なの で、余りは3次以下 R(x) は3次以下の 式だから 2次式で 割ったときの商は1 次以下の多項式と なる. c, dを消去すると、 a +26=-1 4a-b=5 Q(x) =0 のとき, P(x) は4次以上の 式となる。 多項式 P(x)=A(x)・B(x)+R(x) のとき,P(x) をA(x)で割っ た余りと,R(x) を A (x)で割った余りは等しい費用 (x-1)2で割ると x +3余り(x+2)2で割ると-8x+12余るような多項式 P(x) で、次数が最小のものを求めよ. コン 2 うまくり

回答募集中 回答数: 0
数学 高校生

(1)のとき、イコール記号を切り離して3つの方程式を答えとしても正解ですか?

ペー 3空間のベクトルの応用 例題 C1.66 直線の方程式 (1) (315) C1-129 次の条件を満たす直線の方程式を求めよ. (2) 2点A(2,2,-3), B(5, 2, 2) を通る直線 (1) 点A(0, 1, -2) を通り, d=1,2,3) 平行な直線 (3)点A(2,1,0) を通り, d=(0, 0, -1) に平行な直線 考え方 直線の式を求める際は, 「解答 ①p=a+td (1点A(a) を通り,方向ベクトルの直線) ②p=a+t(b-a) (2点A(a),B(b)を通る直線) を利用する.(②で b-a=d とおくと, ①と同じ式になる.) (1)A(7) とし,求める直線上の点をP(D) とすると, p=a+td (tは実数) だから,P(x,y,z) とすると, (x,y,z) = 0,1,-2)+t(1,2,3) **** x= =(t,1+2t,-2-3t) (tは実数) よって、求める方程式は, tを消去して y-1_z+2 2 (2)A(2,2,-3) を通り,方向ベクトルが AB= (3,0.5)の直線だから (x,y,z) = (2,2,-3)+t(305) =(2+3t,2,-3+5t) (tは実数) よって、求める方程式は を消去して, x-2_z+3 35,y=2平 (3)点A(2,1,0)を通り, 方向ベクトルが (0, 0, -1) の直線だから分 4-1-2-1 (x,y,z)=(2,1,0)+t(0,0, -1) (2,1,-t(tは実数) よって、求める方程式は, x=2,y=1 炭火&取沢 標準形という. AB =(5-2, 2-2, 2+3) =(3, 0, 5) より, 点Aを通り, AB に平行な直線と 考えればよい. 1 y 2人 xx zは任意の実数 第4章 Focus 空間における直線は, ベクトル方程式p=a+td (tは実数) を 用いて表す 注)(2)では,方向ベクトルの成分は0より、この直線上の点のy座標はつねに2(一定値) である.(3)では,方向ベクトルのxy成分はともに0より, この直線上の点のxy 座標はつねに x=2,y=1(一定値)であり、座標は任意の実数値をとる。 ●から成っている。 練習 次の条件を満たす直線の方程式を求めよ. C1.66 (1) 点A(2,-1, 3) を通り (2,16)に平行な直線 ** (2) 2点A(1, 2, 3), B(4, 3, -1) を通る直線 - (3) 点A(7, 2, 8) を通り、x軸に平行な直線 B1 58.13 B2 C1 C2

未解決 回答数: 1