学年

質問の種類

数学 高校生

格子点の問題の解き方を教えて欲しいです!

ともに整数で 並ぶから、 る。 いた よび内部である。 (1) 領域は、右の図の赤く塗った三角形の周お 直線y=k (n-1, ......, 0) 上には, 0 (2n−2k+1) 個の格子点が並ぶ。 よって, 格子点の総数は 基本 16 (2n-2k+1)=(2n-2.0+1) k=0 =n²+2n+1=(n+1)² (1) n +(-2k+2n+1) =2n+1-2・1/23n(n+1)+(2n+1)n y4 k=1 n. 0 n =(n²+1)+(n²+1)Σ1−Σk² x+2y=2n k=1 y n n-1 線分x+2y=2n(0≦y≦n) 上の格子点(0, n), (2, n-1), ....*', (2,0)の個数はn+1 4 (0, 0), (2n, 0), (2n, n), 06 (n+1) 個 (0, n) を頂点とする長方形の周お よび内部にある格子点の個数は (2n+1)(n+1) (対角線上の格子点の数) ゆえに、求める格子点の個数をNとすると 2N-(n+1)=(2n+1)(n+1) (*) =(長方形の周および内 部にある格子点の数) よってN=1/12 ((2n+1)(n+1)+(n+1)=1/27(n+1)(2n+2)=(n+1)^(個) (2)領域は,右の図の赤く塗った部分の周および内部であ る。 直線x=k(k=0, 1,2, YA n-1, n) 上には, ²k2+1) 個の格子点が並ぶ。 よって, 格子点の総数は Σ(n²−k²+1)=(n²-0²+1)+Σ(n²+1−k²) ==(n+1)(6(n²+1)-n(2n+1)} =(n+1)(4n²−n+6) (13) k 1 0 JU [+2+A01+³A01- 1 2 2n =(n+1)+(n+1)-1/12n(n+1)(2n+1) =(n+1)(n²+1)-1/1/n(n+1)(2n+1) -y=-11/2x+n (x-2n-2y) 2n-2k 2n-1 2n-21 2n k=0 の値を別扱いした -2Ek+ 0 = -2.1/n(n+1) Σk+(2n+1)Σ1 n² n²-1 n²-2 k² k=0 +(2n+1)(n+1) でもよい。 (*) 長方形は,対角線で 2つの合同な三角形に分け られる。よって ( 求める格子点の数) ×2 y=x2 k=1 391 0 1 R n 別解 長方形の周および内 部にある格子点の個数 (²+1)(n+1) から,領域 外の個数を引く。 ors (2) 0≤x≤n, y≥x², y≤2x² 1章 x 3 PRACTICE 280 次の連立不等式の表す領域に含まれる格子点の個数を求めよ。 ただし, nは自然数と する。 (1) x20, y≥0, x+3y≤3n 種々の数列

回答募集中 回答数: 0
数学 高校生

格子点の個数の問題が全くわかりません! 考え方を教えて欲しいです。

票がともに整数で =x² xa 基本 16 ey が並ぶから, になる。 いた (1) 領域は, よび内部である。 直線y=k(n-1, (2m-2k+1) 個の格子点が並ぶ。 よって, 格子点の総数は 右の図の赤く塗った三角形の周 2-0 (2n-2k+1)=(2n-2-0+1) .....,.0) 上には、 ゆえに, k=1 =n²+2n+1=(n+1)² (13) ya 線分x+2y=2n (0≦y≦n) + 2(−2k+2n+1) = 2n+1-2·½n(n+1)+(2n+1)n ya n -1 0 k k=1 1 -x+2y=2n O 上の格子点(0, n), (2,n-1), (2n, 0)の個数はn+1 4 (0, 0), (2n, 0), (2n, n), よび内部にある格子点の個数は (2n+1)(n+1) 0, n) を頂点とする長方形の周お 求める格子点の個数をNとすると 2N-(n+1)=(2n+1)(n+1) - (*) よってN=1/12 (2n+1)(n+1)+(n+1)=1/2(n+1)(2+2)=(n+1) US (n+1)個 2n 12 (2) 領域は,右の図の赤く塗った部分の周および内部であ る。直線x=k(k=0,1,2, (n²-k²+1) 個の格子点が並ぶ。 よって, 格子点の総数は ......, n-1, n) 上には x £(n²−k² + 1) =(n²−0²+1)+ Σ(n²+1−k²) ___ \7 +3 k=0 までの和を求めよ =(n²+1)+(n²+1)Σ¹–Ë k² k=1 = (n²+1)+(n²+1)n- n(n+1)(2n+1) 2=(n+1)(n²+1)-1/12 n(n+1)(2n+1) とする=1/(n+16(n²+1)-z(2n+1)} 400*NZJJR$ 1+2+01+01+ =(n+1)(4n³²_n+6) (15) 12m-21 2m 2月2k 2m-1 k=0 の値を別扱いした が、 -2 Ek+(2n+1) 1 = -2- -— n(n+1) ( 求める格子点の数)×2 √743' k21 でもよい。 (*) 長方形は,対角線で 2つの合同な三角形に分け られる。 よって n²-1 (対角線上の格子点の数) =(長方形の周および内 部にある格子点の数) ²-2 +(2n+1)(n+1) 391 1 y=x² 1章 (A) OTS 3 1 k n 800 別解 長方形の周および内 部にある格子点の個数 (²+1)(n+1) から 領域 (2) 0≤x≤n, y≥x², y≤2x² 種々の数列 外の個数を引く。 k=1 x PRACTICE 280 次の連立不等式の表す領域に含まれる格子点の個数を求めよ。ただし,nは自然数と -Tore : S する。 (1) x≧0 y≧0,x+3y≦3n

回答募集中 回答数: 0
数学 高校生

数Iの連立不等式の問題です。 (2)なのですが、ノートに書いたように√3を求める際、√1<√3<√4より√3は整数部分が1で、その後小数部分を求めるという方法で解こうと思ったのですが、解き方が分からなくなってしまいましたので、 解説をお願いしたいです。 よろしくお願いします。

例題100 連立不等式 思考プロセス Jx2-6x+5 ≦0 (1) 連立不等式 12x²-11x+120 不等式2x-10x-9 < -3x+2x≦-2x-2 を解け。 * Action 連立不等式の解は、数直線上に表して求めよ 19 127229 ⅡI. それぞれの解を数直線上に図示して, 共通な範囲を求める。 A, B, C を入れると? I. それぞれの不等式を解く。 (2) 式を分ける 不等式 A<B≦C は, 連立不等式 解 (1) x2-6x+5 ≦0 より よって 1≤x≤5 2x-11x+12>0 より x < 3 2 よって 4<x 右の数直線より 求める不等式 の解は (x-1)(x-5)≦0 を解け。 (2x-3)(x-4) > 0 (2x²-10x-9<-3x²+2x |-3x2+2x≦-2x²-2 ①より 5x²-12x-9< 0 (5x+3)(x-3) <0より ② より x-2x-2≧0 x2-2x-2=0 とすると よって、②の解は 1+√3≦x<3 3 1≤x<2 4< x≤5 (2) 2x²-10x-9 <-3x²+2x≤ - 2x² - 2 h 31, x≤1-√3, 1+√√3 ≤ x 右の数直線より、求める不等式 の解は 3 13 2009 ... ... (2) <x<3 x=1±√3 [1-31 350 と同じ意味である。 4 5 1+√3 3 x 2つの不等式の解を 求める 共通な範囲が解である。 A<B≤CA< 21-√32-06 関係は,各々から1を くと-√3, ここで √√3> B≤0 85 の大人 よって厚く - 1/3 ゆえに 1-15-12

回答募集中 回答数: 0