学年

質問の種類

物理 高校生

至急!この問題の解法を教えてください🙇‍♀️

... 79.〈音波の性質> 図1上図のように原点Oにスピーカーを置き, 一定の振幅で, 一定の振動数の音波をx軸の正の向きに連続的に発生させる。 空気の圧力変化に反応する小さなマイクロホンを複数用いて, x 軸上 (x>0) の各点で圧力の時間変化を測定する。 ある時刻において,x軸上(x>0)の点P付近の空気の圧力か xの関数として調べたところ、 図1下図のグラフのようになっ た。 ここで距離 OP は音波の波長よりも十分長く,また音波が存 在しないときの大気の圧力をする。圧力が最大値をとる x=x から, 次に最大値をとる x=x までのxの区間を8等分 X1,X2, ...,と順にx座標を定める スピーカー X3 X4 X5 Poss XoX1 X2 点P付近の拡大図 図1 から x までの各位置の中で, x軸の正の向きに空気が最も大きく変位している位置, およびx軸の正の向きに空気が最も速く動いている位置はそれぞれどれか。 次に点Pで空気の圧力の時間変化を調べたところ、図2のグ P4 ラフのようになった。 圧力が最大値をとる時刻t=to から, 次に最大値をとる時刻t=ts までの1周期を8等分した、 た,..., と順に時刻を定める。 からまでの各時刻の中で, x軸の正の向きに空気が最も 大きく変位しているのはどの時刻か。 図3のように,原点Oから見て点Pより遠い側の位置に,x軸 に対して垂直に反射板を置くと,圧力が時間とともに変わらず常 po となる点がx軸上に等間隔に並んだ。 (3)これらの隣接する点の間隔dはいくらか。なお,音波の速さ をcとする。 Pos ta ta ts to tit tet ts t 図2 図3 反射板 (4) (3)の状態から気温が上昇したところ, (3) で求めたdは増加した。 その理由を説明せよ。

回答募集中 回答数: 0
物理 高校生

至急!この問題の解法を教えてください🙇‍♀️

必 76. 〈円形波の反射〉 5.0Hzの円形波が次々と送り出され, 水面上を伝わっていく。図で円は 水面波の山の位置を表している。 0を通り器壁に平行な直線上で0から 8.0m離れた点をPとする。 OからPの向きにのびる半直線を破線で表 し, Lとよぶ。 0から送り出された波はやがて器壁で反射するが, 反射 の際、波の振幅および位相は変わらないとする。 また, 水槽内の水面は 図のように、水槽の器壁から3.0m離れた点を波源として, 振動数 十分に広く水深は一様で、一度反射した波が再び器壁にもどることはな 8.0m P 3.0m く,水面を伝わる波の速さは一定であるとする。さらに,波の振幅の減衰はないものとする。 (1) 0から出た1つの円形波Cが器壁に届き反射した後, 反射波の山がPに達した。 この瞬 間の波C全体の山の位置(実線)を正しく表した図は(ア)~(エ)のどれか。 (ア) (イ) (ウ) (エ) ここでL上の任意の点をQとし, OQ=x[m] とおく。 Qでの, 0から直接届いた波と器 壁で反射して届いた波の干渉を考える。 22 波長を入[m], n=1, 2,...として,Qで2つの波が弱めあう条件を書くと, =(2-1) 1/12 となる。□に当てはまる式を入れよ。 いまx=8.0m の点Pでは2つの波が干渉した結果, 互いに弱めあい, 水位が変化しない という。また, L上で水位が同様に変化しない点のうち,0から見てPよりも遠くにあるの は2個だけであった。 PはL上で(2)で得られた条件を満たす点のうち, nがいくつに相当するか。 (4)入は何か。

回答募集中 回答数: 0
数学 高校生

なぜ弦の長さを2lと置くのですか?

解答 円 ②の中心 (0, 0) 直線 ①の距離は, |2| √2+(-1) |2| 2 √55 == 求める弦の長さを2ℓ とすると,円の 半径が22より Think 例題 89 弦の長さ(1) **** 直線 y=2x+2 ① が円 x+y'=8......② によって切り取られて できる弦の長さを求めよ. 考え方 図に描いて考える. 円の中心と弦の距離を求めて, 三平方の定理を利用する. y=2x+2 より 2x-y+2=0 2ℓ とおくのがポイ ント ay 2√2 2√2 2√2 M €² + (√²²)²= (2√2)² 2 x 8= (22) 2 V ME) 36 + 三平方の定理 5 lo より l= =6√5 5 よって、 弦の長さ 2ℓ は, 12/5 5 (別解) ①を②に代入して, x2+(2x+2)2=8 YA 求める長さは2ℓで あることを忘れずに、 解と係数の関係を利 (3,23+2)用する解法 5x2+8x-4=0 ・③ また,円 ②と直線 ①の交点の座 標を(α, 2α+2) (3,2β+2) とす ると,,βは2次方程式 ③ (a,2a+2) E) ふん」の2つの解だから,解と係数の関係より, ちょう 8 α+B=B=14 4 5 長さを l とすると, x Bax²+ bx+c=0 0) 2つの解をα βと すると (E)-(a+B=-- l°=(β-α)+{(2β+2)-(2α+2)}=5(β-α)2 (3-α)a= a aẞ= 55のときだす =5((a+3)-4aß)=5(-)-4()} 2 144 三平方の定理 よって、l>0より、弦の長さは, 12/5 Focus I+ awo+m 弦の長さの問題は、円の中心から弦に垂線を引き、 三平方の定理を利用する D>m> l²+d²=r² 接点の直

未解決 回答数: 1
化学 高校生

高校化学の問題です。 322番の問題の解説を読んでもよく分からなかったので、教えて欲しいです。

あった (3)下線部 (4) 下線部の状態で,ピストンを自由に動けるようにすると,式(i)に示す平衡はどのよ うに変化するか。 理由とともに記せ。 (5) 下線部の状態で, ピストンを固定したまま容器に気体のアルゴンを加えて全圧を増 80字程度で記せ。 加させると, 式 (i)に示す平衡はどのように変化するか。 理由とともに句読点を含めて 322 反応速度と平衡 図の曲線 (a)は,430℃付 近で水素とヨウ素の混合気体からヨウ化水素が生 じる反応 H2(気) +I2(気) 2HI(気) △H = -12kJ のヨウ化水素の生成量と反応時間の関係を表し ている。次のように条件を変えると,曲線は(b)~ (g)のどれに変化するか。 それぞれ答えよ。 (1) 反応温度を少し上げる。 (2) 触媒として白金を共存させる。 の生成量 ■名古屋大 改 -- (f) 0.10 m 反応時間 名古屋大 改 18 BA /L 平 院展 323 中和滴定とpH 0.10mol/L アンモニア水 10mL に, 0.10mol/L塩酸を滴下しpH変化を調べ ると,右図の曲線が得られた。図中のA~Dの各点で のpHを小数第2位まで求めよ。 中和 (水の生成)によ pH る溶液の体積の変化は考えないものとする。 B アンモニアの電離定数 K=2.0×10 -5 mol/L C•中和点 D 14

未解決 回答数: 1
数学 高校生

(ア)の問題でなぜkとおけるのですか?

(1) AB=8, を AB, AC で表せ。 V (2) AOAB において, OA=d, OB=1とする。 (ア) ∠O を2等分するベクトルは, ることを示せ。 (+) (kは実数 と表され (イ) OA=2,OB=3, AB=4 のとき, ∠Oの二等分線と ∠Aの外角の二等分 線の交点をPとする。 このとき,OP を d, 方で表せ。 指針 (1) 三角形の内心は、3つの内角の二等分線の交点である。 次の「角の二等分線の定理」を利用し、 まずAD を AB, AC で表す。 右図で AD が △ABCの∠Aの二等分線 ⇒ BD:DC=AB: AC 次に, △ABD と ∠Bの二等分線 BI に注目。 B' 基本26 (2)Oの二等分線と辺 ABの交点をDとして,まずOD を a, b で表す。 [別解] ひし形の対角線が内角を2等分することを利用する解法も考えられる。 つ まり, OA'=1, OB'=1となる点 A', B' をそれぞれ半直線 OA, OB 上にとっ てひし形 OA'CB' を作ると, 点Cは ∠Oの二等分線上にあることに注目する。 (イ)(ア)の結果を利用して, 「OPをa, で2通りに表し, 係数比較」の方針で。 → ACOA となる点Cをとり、(ア)の 点Pは∠Aの外角の二等分線上にある 結果を使うとAPはa, で表される。 OP = OA+APに注目。 AO (1)△ABCの∠Aの二等分線と辺BCの交点をDとすると Cの二等分線と辺 BD:DC=AB:AC=8:5 ABの交点をEとし 答 5AB + 8AC { AE: EB=5:7, よって AD= 13 8 56 また, BD=7• = であるから 13 13 56 AI: ID=BA:BD=8: =13:7 70-TO-HA 13 ゆえに 13 AI-202AD=122.5AB+8AC-1AB+/AC 13 20 20 13 4. (2)(ア∠Oの二等分線と辺 AB の交点をDとすると AD:DB=0A:OB=||:|| 3 =2:3 このことを利用して 角の二等分線の定理 を2回用いると求め られる。 角の二等分線の定理 を利用する解法。 0=-8 15 EI: IC= : 5 10 B 7 D もよい。 ゆえにOD= |6|0A+|a|OB aba 方 = lal+161 + a+b a b 16 ab される。 求めるベクトルは,t を t≠0 である実数としてOD と表 t=kとおくと, 求めるベクトルは |a|+|6| + 6 (kは実数 k≠0) 161 A a a tOD= a+ba 0

未解決 回答数: 1
数学 高校生

数学についてです 赤線で引いてある部分がよくわかりません なぜ余りを割るという操作をするのかわからないです 具体例など出してくださると嬉しいです わかる方お願いいたします。

基本 例題 56 剰余の定理利用による余りの問題 (2) 多項式P(x) を x+1で割ると余りが-2, x2-3x+2で割ると余りが-3x+7 であるという。このとき,P(x) を (x+1)(x-1)(x-2) で割った余りを求めよ。 指針 例題 55と同様に、割り算の等式 A=BQ+R を利用する。 基本55 重要 57 3次式で割ったときの余りは2次以下であるから,R=ax2+bx+cとおける。 問題の条件から、このα,b,c の値を決定しようと考える。 別解 前ページの別解のように,文字を減らす方針。 P(x) を (x+1)(x-1)(x-2) で割ったときの余りを,更にx3x+2 すなわち (x-1)(x-2) で割った余りを考 える。 P(x) を (x+1)(x-1)(x-2) で割ったときの商をQ(x), 解答 余りをax2+bx+c とすると,次の等式が成り立つ。 ...... P(x)=(x+1)(x-1)(x-2)Q(x)+ax2+bx+c ここで,P(x) を x+1で割ると余りは−2であるから ② P(-1)=-2 ① 3次式で割った余りは, 2 次以下の多項式または定 数。 また,P(x) を x-3x +2 すなわち (x-1)(x-2) で割った ときの商をQi(x) とすると B=0 を考えて x=-1, 1,2 を代入し, a, b, cの値 を求める手掛かりを見つ ける。 P(x)=(x-1)(x-2)Q1(x)-3x+7 ゆえに P(1)=4 ...... ③, P(2)=1 ...... ④ よって, ①と②~④より a-b+c=-2, a+b+c=4,4a+26+c=1 この連立方程式を解くと a=-2,6=3,c=3 したがって 求める余りは (第2式) - (第1式) から 266 すなわち 6=3 (2) 指 2x2+3x+3 別解 [上の解答の等式① までは同じ ] x2-3x+2=(x-1)(x-2) であるから, (x+1)(x-1)(x-2)Q(x)はx-3x+2で割り切れる。 ゆえに,P(x) をx2-3x+2で割ったときの余りは, ax2+bx+cをx2-3x+2で割ったときの余りと等しい。 P(x) をx2-3x+2で割ると余りは-3x+7であるから ax2+bx+c=a(x2-3x+2)-3x+7 よって,等式①は,次のように表される。 P(x)=(x+1)(x-1)(x-2)Q(x)+α(x2-3x+2)-3x+7 したがって P(-1)=6a+10 P(-1)=-2であるから 6a+10=-2 よって a=-2 求める余りは-2(x2-3x+2)-3x+7=-2x+3x+3 この解法は、下の練習56 を解くときに有効。 ax2+bx+c を x2-3x+2で割ったとき の余りをR(x) とすると 商は αであるから P(x) (水) =(x+1)(x-1)(x-2)Q(x) +α(x2-3x+2)+R(x) =(x2-3x+2) {(x+1)Q(x)+α}+R(x)

未解決 回答数: 1