学年

質問の種類

化学 高校生

️⭕️の数字は何で決まるんですか?

式はCxHyOz となる。 質量組成値が与えられた場合 C. A [%] HB[%] O…100-(A+B)[%] C:HO=112 A B 100- (A+B) : 1.0 16 =x:yiz (整数比) 式の決定 4,02)n=(組成式の式量)×n=(分子量)からnを求め,分子式 CnxHnyOnz とす 式の決定 化合物の性質から官能基を決定し,価標の数に留意して構造式を 価標の数: C... 4, H... 1, 0…2, N...3, C ・・・1 生体 分子式は同じであるが,構造や性質の異なる化合物。 異性体 炭素原子の骨格, 官能基の種類, 置換基の結合位置が異なる異性体 CH3-CH2-CH2-CH3 CH3-CH-CH3 C4H10 ブタン CH3 2-メチルプロパン C2H6O CH3-CH2-OH エタノール CH3-O-CH3 ジメチルエーテル C3H7Br CH3-CH2-CH2-Br CH3-CH-CH3 1 プロモプロパン Br 2-プロモプロバン 異性体 示性式は同じであるが,原子や原子団の立体配置が異なる異性体。 シス トランス異性体(幾何異性体) 炭素原子間の結合が自由回転できないた じ沸点や融点が異なる。 二重結合をもつ化合物や環式化合物にみられる。 <[ CH3 CH3 CH3. H C=C 融点 - 139℃ C=C H H 沸点 4°C H CH3 融点-106℃ 沸点 1°C シスト2-ブテン(シス形) * 鏡像異性体(光学異性体) 不斉炭素原子を つため, 互いに鏡像の関係にある。 沸点や融 トランスト2-ブテン(トランス形) COOH HOOC は同じであるが, 偏光に対する性質が異なる。 H3C SOH HO 斉炭素原子・・・ 同一炭素原子に4個の異なる原子や原 一団が結合した炭素原子 (図中の*が不斉炭素原子) H H D-乳酸 (鏡) L-乳酸 137 37

未解決 回答数: 0
数学 高校生

(3)の解説がわからないです! 精講に球面Cと直線lが異なる2点で交わるときOH<半径とありますがそれも分からないので教えて欲しいです!!

263 うる値の範囲を求めよ. (3) 球面Cと直線1が異なる2点P,Qで変わるようなαのとり 基礎問 262 第8章 ベクトル 168 球と直線 座標空間内に, 球面C:x+y+z=1 と直線があり、直線 1は点A(a, 1, 1)を通り, u = (1, 1, 1) に平行とする.また, a1とする。このとき,次の問いに答えよ. (上の任意の点をXとするとき,点の座標を媒介変数を 用いて表せ (2) 原点Oからに下ろした垂線との交点をHとする.Hの座 標をαで表し,OH を αで表せ. (2) Hは上の点だから, (1) を用いて OH=(t+a, t+1, t+1)と表せる. ここで,OH だから, OH・ü=t+a+t+1+t+1=3t+α+2=0 H 3 2a-2 た 1 t=-Q+2 このとき,t+α= 3 t+1=q+1 よって、(24/2g+q+1) 2a-2 -a+1 3 3 また, OH2=- 9 (29-2)2 =14/01(1-1)+1/2 (a+1)+1/18( (-a+1)2 (デ = (a-1)2 (4) (3) のとき,∠POQ= となるαの値を求めよ. 1 33 2点間の距離の公式 2 (1) A (No, Yo, Z0) を通り, ベクトル u = (p, q, r) に平行な直 a≧1 だから,OH=6l4-1= (3) OH<1 だから 6 3 √(a−1) √A²=\A\ 3 (a-1)<1 : 1≦a<1+k tu √6 2 ◆仮定に a≧1 がある 1 H 線上の任意の点をXとすると OX = (No, yo, zo)+t(p,g,r) とせます. (2)日は上にあるので, (1) を利用すると, OH がαと tで表せます。 そのあと, OH・Z =0 を利用して, t をαで表します. (3) 球面Cと直線が異なる2点で交わるとき OH<半径 が成りたちます. (4)POQ=2をOP・OQ=0 と考えてしまっては,タイヘンです. 0 それは,PとQの座標がわからないので, OP, OQを成分で表せないから です。座標やベクトルの問題では、幾何の性質を上手に使えると負担が軽く なります。 解答 (1)OX=OA+tu=(a,1,1)+(t,t,t)=(t+a, t+1, t+1) :.X(t+α, t+1, t+1) (4)POQ= だから, OH= √2 -(4-1)=- /3 3 a=1+ 2 2 ポイント 中心 (a, b, c), 半径の球面の方程式は 演習問題 168 (x-a)+(y-b)2+(z-c)2=r2 いい 168において, (1)POQ=7 となるようなαの値を求めよ. (2) 線分 PQ の長さが最大になる点Aに対して, 球面C上の動点R をとり, 線分AR を考える 線分ARの長さを最小にする点Ro の座標を求めよ. 第8章

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問題1が解けません途中式含めて教えていただけると助かります

1.2 解の存在と一意性 3 1 1階常微分方程式 本章では微分方程式の中でも最も単純な1階常微分方程式の解き方を学ぶ、単 純とはいっても解がすぐに見つかるとは限らない。 比較的容易に解が得られる微 分方程式にはいくつかのタイプがあるので、それをみてみよう.これらの解法は 2階以上の、より複雑な微分方程式の解法の基礎でもある. §1.1 微分方程式の階数 ェを変数とする未知関数をg(x)として F(x,y,y,y',...) = 0 x, y(x), y(x) = dy dx' d²y y" (x) = dx2, から成る方程式: (1.1) を常微分方程式という. また, 導関数の微分回数を階数といい, 階導関数 y(n) = dmy/dr” が (1.1) の最高階数の導関数のとき, (1.1) をn 階常微分方 程式という. たとえば,x軸上で力f (x) を受けて運動する質量mの質点の時刻での 座標x (t) は, よく知られているように,ニュートンの運動方程式 m = f(x) dt² (1.2) に従う.これは変数がt, 未知関数がェ (t) の2階常微分方程式の例である. 他方,同じ問題を質点がポテンシャルV (x) の中を力学的エネルギーEで 運動しているとしてエネルギー保存則の立場で見ると, d²x + V (x) = E (1.3) と表される.この式に含まれる導関数はdr/dt だけなので,これは1階常 微分方程式である。 [問題1] f(x)=-dV (x)/dr として,上の2式が等価であることを示せ. ヒント:エネルギー保存則によりEは一定であることに注意し、 (1.3) の両辺を で微分してみよ。) 本章では,最も階数の低い1階常微分方程式について学ぶ。 §1.2 解の存在と一意性 微分方程式の解の存在やその一意性などというと大変難しそうに聞こえる が,これから見るように直観的にはそれほど難しいことではない. 1階常微 分方程式のもっとも一般的な形は (1.1)より F(x,y,y)=0 (1.4) と表される. これをの方程式と見なして, それについて解けるときには dy = f(x, y) dr (1.5) と表される.この微分方程式は、 図1.1に示したように,その解y (x) があ ったとして解曲線y= y (x) をry 平面上に描くと, 任意の点(x,y) でのこ の曲線の接線の傾きがf(x,y) であることを意味する. したがって,(1.5) を解いてy(x) を求めるというの は, 曲線y=y(z) 上の点(x,y) で その接線の傾きがちょうどf (x,y) に等しいものを見出すことに相当す る. このことからまた, (1.5) を幾何 学的に解く方法も考えられる. ry 平面上の任意の点(x,y) f (x,y) を計算し,その値を傾きとしてもつ y 0 接線の傾き: f(x,y) 図 1.1 y=y(x)

回答募集中 回答数: 0