学年

質問の種類

数学 高校生

格子点の問題の解き方を教えて欲しいです!

ともに整数で 並ぶから、 る。 いた よび内部である。 (1) 領域は、右の図の赤く塗った三角形の周お 直線y=k (n-1, ......, 0) 上には, 0 (2n−2k+1) 個の格子点が並ぶ。 よって, 格子点の総数は 基本 16 (2n-2k+1)=(2n-2.0+1) k=0 =n²+2n+1=(n+1)² (1) n +(-2k+2n+1) =2n+1-2・1/23n(n+1)+(2n+1)n y4 k=1 n. 0 n =(n²+1)+(n²+1)Σ1−Σk² x+2y=2n k=1 y n n-1 線分x+2y=2n(0≦y≦n) 上の格子点(0, n), (2, n-1), ....*', (2,0)の個数はn+1 4 (0, 0), (2n, 0), (2n, n), 06 (n+1) 個 (0, n) を頂点とする長方形の周お よび内部にある格子点の個数は (2n+1)(n+1) (対角線上の格子点の数) ゆえに、求める格子点の個数をNとすると 2N-(n+1)=(2n+1)(n+1) (*) =(長方形の周および内 部にある格子点の数) よってN=1/12 ((2n+1)(n+1)+(n+1)=1/27(n+1)(2n+2)=(n+1)^(個) (2)領域は,右の図の赤く塗った部分の周および内部であ る。 直線x=k(k=0, 1,2, YA n-1, n) 上には, ²k2+1) 個の格子点が並ぶ。 よって, 格子点の総数は Σ(n²−k²+1)=(n²-0²+1)+Σ(n²+1−k²) ==(n+1)(6(n²+1)-n(2n+1)} =(n+1)(4n²−n+6) (13) k 1 0 JU [+2+A01+³A01- 1 2 2n =(n+1)+(n+1)-1/12n(n+1)(2n+1) =(n+1)(n²+1)-1/1/n(n+1)(2n+1) -y=-11/2x+n (x-2n-2y) 2n-2k 2n-1 2n-21 2n k=0 の値を別扱いした -2Ek+ 0 = -2.1/n(n+1) Σk+(2n+1)Σ1 n² n²-1 n²-2 k² k=0 +(2n+1)(n+1) でもよい。 (*) 長方形は,対角線で 2つの合同な三角形に分け られる。よって ( 求める格子点の数) ×2 y=x2 k=1 391 0 1 R n 別解 長方形の周および内 部にある格子点の個数 (²+1)(n+1) から,領域 外の個数を引く。 ors (2) 0≤x≤n, y≥x², y≤2x² 1章 x 3 PRACTICE 280 次の連立不等式の表す領域に含まれる格子点の個数を求めよ。 ただし, nは自然数と する。 (1) x20, y≥0, x+3y≤3n 種々の数列

回答募集中 回答数: 0
数学 高校生

格子点の個数の問題が全くわかりません! 考え方を教えて欲しいです。

票がともに整数で =x² xa 基本 16 ey が並ぶから, になる。 いた (1) 領域は, よび内部である。 直線y=k(n-1, (2m-2k+1) 個の格子点が並ぶ。 よって, 格子点の総数は 右の図の赤く塗った三角形の周 2-0 (2n-2k+1)=(2n-2-0+1) .....,.0) 上には、 ゆえに, k=1 =n²+2n+1=(n+1)² (13) ya 線分x+2y=2n (0≦y≦n) + 2(−2k+2n+1) = 2n+1-2·½n(n+1)+(2n+1)n ya n -1 0 k k=1 1 -x+2y=2n O 上の格子点(0, n), (2,n-1), (2n, 0)の個数はn+1 4 (0, 0), (2n, 0), (2n, n), よび内部にある格子点の個数は (2n+1)(n+1) 0, n) を頂点とする長方形の周お 求める格子点の個数をNとすると 2N-(n+1)=(2n+1)(n+1) - (*) よってN=1/12 (2n+1)(n+1)+(n+1)=1/2(n+1)(2+2)=(n+1) US (n+1)個 2n 12 (2) 領域は,右の図の赤く塗った部分の周および内部であ る。直線x=k(k=0,1,2, (n²-k²+1) 個の格子点が並ぶ。 よって, 格子点の総数は ......, n-1, n) 上には x £(n²−k² + 1) =(n²−0²+1)+ Σ(n²+1−k²) ___ \7 +3 k=0 までの和を求めよ =(n²+1)+(n²+1)Σ¹–Ë k² k=1 = (n²+1)+(n²+1)n- n(n+1)(2n+1) 2=(n+1)(n²+1)-1/12 n(n+1)(2n+1) とする=1/(n+16(n²+1)-z(2n+1)} 400*NZJJR$ 1+2+01+01+ =(n+1)(4n³²_n+6) (15) 12m-21 2m 2月2k 2m-1 k=0 の値を別扱いした が、 -2 Ek+(2n+1) 1 = -2- -— n(n+1) ( 求める格子点の数)×2 √743' k21 でもよい。 (*) 長方形は,対角線で 2つの合同な三角形に分け られる。 よって n²-1 (対角線上の格子点の数) =(長方形の周および内 部にある格子点の数) ²-2 +(2n+1)(n+1) 391 1 y=x² 1章 (A) OTS 3 1 k n 800 別解 長方形の周および内 部にある格子点の個数 (²+1)(n+1) から 領域 (2) 0≤x≤n, y≥x², y≤2x² 種々の数列 外の個数を引く。 k=1 x PRACTICE 280 次の連立不等式の表す領域に含まれる格子点の個数を求めよ。ただし,nは自然数と -Tore : S する。 (1) x≧0 y≧0,x+3y≦3n

回答募集中 回答数: 0
数学 高校生

東工大数学 採点していただきたいです。 途中まで(ノートの左下)で間違えています 50点中何点もらえますか?

24 する。 辺ABを xl-x (0≦x<l) の比に内分する点Pと,辺ACをy: l-y (0≦y<1> の比に内 分する点Qをとり、線分BQ と線分 CP の交点をRとする。 このとき, RがAM に含まれるような (x,y) 全体をxy平面に図示し, その面積を求めよ。 (ただし、道 AB. 辺ACを0:1の比に内分する点とは,ともに点Aのこととする。) 2003年度 (3) △ABCにおいて, 辺ABの中点をM. 辺ACの中点をとする。 ポイント 前半は、平面ベクトルの典型問題である。 平面上のどのようなベクトルも その平面上の2つのベクトルa, a≠0. b=0, ax b) を用いて, Bb (a. B は実数) の形に表されること, そしてその表し方は1通りであることは重要な事実であ る。また、△ABCの間および内部にある点Pは, AP=αAB+ BAC (a+β≦1,420 B20) で表されることもマスターしておくべき基本事項である。 520) 不等式の表す領域の図示と面積を求めるための定積分計算である。 解法 △ABQにおいて, AQ=yAC (0≦y<1) であるか ら,実数s を用いて AR = (1-s) AB+syAC (0≦s≦1) ...... ① と表せる。 また, ACP において, AP=xAB (0≦x<1) であるから実数を用いて AR=AB+(1-1) AC (0≦t≦) ....... ② と表せる。 ABとACは1次独立 (AB AC. MEAN AB≠0. AC ±0) なので ①②より したがって. ①より AR=(1-1-4) AB+1-5 1-xy ここで -xyAC= x (1-y) 1-xy B 1-s=tx, sy=1-1 が成り立つ。 0≦x<1,0≦y<1に注意して, この2式からtを消去すると 1-1 E'S (1-x) -AB + Level B M O P _y(1-x) -AC 1-xy x(1-y) 1-xy とおくと AM= y (1-x) 9= 1-xy AM-AR AN-ACCA& AR=pAB+qAC=2pAM+2qAN となり、点Rが△AMN に含まれるためには xy- 2p+2q≦1④ が成り立つことが必要十分である。 ③を用いると, ④ ⑤ はそれぞれ y(1-x)206 1-xy x+y-2xy=-xy = 1-xy 0≦x<1,0≦y<1より. ⑤'は成り立つ。 また, 0≦x<1,0≦y<1に注意して, ④'を変形す ると よって, 0≦x<1,0≦y<1のもとで, ④’を満たす 点(x,y)をxy平面に図示すると、右図の斜線部 分(境界はすべて含む)になる。 すなわちy=1/1 23 2p20. 2q205062 [注]不等式 (x-2)(x-2/31) 2010/19 リー = x (1-y), -≥0. 1-xy 5- £² (1.-7. 3) 4 S= 9 2 ---- (10)+ §3 平面図形 129 UN + 1/23 を描く。 次に、この境界線で区切られた3つの部分の1つを選 y= の表す領域を図示するには、まず境界線 (x-2)(x-2)=1/ *3 び、その中の1つの点の座標を不等式に代入してみて、成り立てばその点を含む部分に 斜線を施し(同時に境界線をまたいだ隣の隣にも斜線を施す)。 成り立たなければ隣の 部分に斜線を施す。 正領域∫ (x,y) > 0.負領域f (x,y) <0は境界線をまたいで交互に 現れることを利用するのである。 さて 求める面積をSとすると

回答募集中 回答数: 0