学年

質問の種類

数学 高校生

Aの座標が3a,3bなのはどうしてですか?

116 基本 例題 67 座標を利用した証明 (1) △ABCの重心をGとするとき, AB2+BC2+CA2=3(GA2+GB +GC)が 成り立つことを証明せよ。 CHART & THINKING y 基本 例題 68 p.112 基本事項 31 51 座標を利用した証明 座標を利用すると、 図形の性質が簡単に証明できる 場合がある。 そのとき、 座標軸をどこにとるか, 与 えられた図形を座標を用いてどう表すかがポイン トとなる。 そこで, あとの計算がスムーズになるよ うに、座標軸を定める ② 変数を少なく A(x1, y₁) B(x2,y2) (x+y+xy+x+a) C(x3,y2) 0 ↓辺BC をx軸上に。 y ★3点A(5,1 Dの座標を求 CHART & 「平行四辺形】 頂点の順序が いことに注意。 形のパターン Dの座標を求 2本の A(x1,y) ( 1 0 を多く くるように0 が多くなるようにとる。 1 問題に出てくる点がなるべく多く座標軸上に O B(x2, 0) C(x3, 0) を利用すると もっとよい方法は? 2つの頂点を原点に関して対称にとる 解答 残りの頂点 — 変数の文字を少なくする。 これらをもとに, 点 A, B, C の座標を文字でどう表すかを考えよう。 直線 BC をx軸に,辺BCの垂直 理由? ←10を多く 二等分線をy軸にとると, 線分三二a,36) BCの中点は原点0になる。 A(3a, 36), B(-c, 0), C(c, 0) ← ② 変数を少なく G(33 平行四辺形 [1] [1] 平 線分 D したが [2]平 線分 G(a,b) とすると, Gは重心であるから, 01 A(a, b) とすると, b B C となり計算が G(a, b) と表すことができる。 このとき AB2+BC2+ CA2 ={(-c-3a)+(-3b)2}+{c-(-c)}+{(3a-c)2+(36)2} =3(6a2+662+2c2) ・① (-c, 0) O (c,0) x 少し煩雑。 した 両辺を別々に計算して 比較する。 [3] = 線分 GA2+GB2+GC2 ={(3a-a)2+(3b-b)2}+{(-c-a)+(-b)2} +{(c-a)+(-b)2} =6α²+6b2+2c2 ①② から AB2+BC2+CA=3(GA2+GB2+GC2) 注意 更に都合がよくなる ようにと, A(0,36)など とおいてはいけない。この 場合, Aはy軸 (辺BCO 垂直二等分線) 上の点に 定されてしまう。 以上 PRACTICE 67° (1) ∠ABCの辺BCの中点をMとするとき, AB'+AC'=2(AM'+BM)(中線定理) が成り立つことを証明せよ。 (2)△ABCにおいて, 辺BC を 3:2 に内分する点をDとする。このとき, 3(2AB2+3AC2)=5(3AD2+2BD) が成り立つことを証明せよ。 P

解決済み 回答数: 1
数学 高校生

数2の高次方程式の問題です。 四角で囲んであるところの意味がわかりません。

基本 例題 63 2重解をもつ条件 00000 3次方程式 x+(a-1)x2+(4-α)x-4=0が2重解をもつように、 実数の 定数αの値を定めよ。 CHART & SOLUTION 3次方程式の問題 因数分解して (1次式)×(2次式)へもち込む x=1 を代入すると成り立つから, 与えられた方程式は (x-1)g(x)=0g(x)は2次式]の形となる。 ここで,「2重解をもつ」 のは次の2通りで、 場合分けが必要。 [1] 2次方程式g(x)=0が1でない重解をもつ。 [2] x=1が2重解→ g(x) = 0 の解の1つが1で,他の解は1でない。 解答 f(x)=x+(a-1)x2+(4-a)x-4 とすると 基本 61 f(1)=1+(a-1)・12+(4-α) ・1−4=0 よって, f(x) は x-1 を因数にもつから f(x)=(x-1)(x2+ax+4) 1 a-1 4-a -4 1 a 4 1 a 4 0 ■ゆえに, 方程式は (x-1)(x2+ax+4) = 0 したがって x1 = 0 または x2+ax+4= 0 この3次方程式が2重解をもつ条件は,次の[1] または [2] が成り立つことである。 [1] x2+ax+4=0 が1でない重解をもつ。 判別式をDとすると D=0 かつ 12+α・1+4=α+5=0 D=α2-16=(a+4)(α-4) 土でも重解 D=0 とするとα=±4 これはα+5≠0 を満たす。 [2] x2+ax+4=0 の1つの解が1, 他の解が1でない。9 x=1 が解であるから よって a+5=0 「このとき x2-5x+4=0 12+α・1+4=0 ゆえに a=-5 よって (x-1)(x-4)=0 これを解いて x=1,4 したがって他の解が1でないから適する。 別解 次数が最低の について整理する方 因数分解してもよい。 x-x2+4x-4+α(3 (1)(x2+4)+ax (x-1)(x2+ax+4 inf. 次のように考 よい。 [2] x2+ax+4=0 1β(1) の と係数の関係か 1+β=-a, β=4 は適する [1], [2] から, 求める定数 αの値は このとき a= a=±4,-5

解決済み 回答数: 2
数学 高校生

(2)の0<1/x<1の式に 問題の式を変形させずに入れてはさみうちの原理を使うことは可能ですか?またできないのであればなぜできないのか教えて欲しいです

=10gsx1 =10g3√x 3x-1 CHART 分母分子に 3x-1 を掛 √xで割る。 (1) 不等式 [3]≦3x < [3x]+1が成り立つ。 解答 x0 のとき,各辺をxで割ると [3x] 1 ここで,3< + から x x (s) [3x] 関西大 基本例題 52 関数の極限 (4) *** 2+3x+x) 基本事項 4. 基本 50 (1) lim x 次の極限値を求めよ。 ただし, [x] は x を超えない最大の整数を表す。 ・はさみうちの原理 89 00000 [zais (2) lim(3*+5*)/ 介 p.82 基本事項 基本 21 利用して,まず 針 。 分母分子を 形 することに 込むのもよい。 818 極限が直接求めにくい場合は、 はさみうちの原理 (p.825 ①の2) の利用を考える。 (1) n≦x<n+1 (n は整数) のとき [x]=n すなわち [x]≦x<[x]+1 よって [3x]3x < [3x]+1 この式を利用してf(x)≦ [3x] -≦g(x) x (ただしlimf(x) = limg(x)) となる f(x), g(x) を作り出す。 なお、記号 []はガ →00 ウス記号である。 (2) 底が最大の項でくくり出すと352) 5(/)+112 (2)の極限と {(g)+1} 力な にや 実で学 2 2章 ⑤関数の極限 はさみうちの原理を利用する。x→∞であるから,x>1 すなわち <1と考 えてよい。 の極限を同時に考えていくのは複雑である。そこで, 0 < x 求めにくい極限 不等式利用ではさみうち 203 [3x] [3x] ≤3< 1 + x x x 3-1 [3x] x XC よって ≤3 x x はさみうちの原理 巻 f(x)≦h(x)≦g(x)で limf(x)=limg(x)=α →∞ x→∞ O lim (3-1) =3であるから (2)(3)1 x→∞であるから,x10 < 1/2 <1と考えてよい。 x このとき(23)+1}{(1) +12 <{(1/3)+1} すなわち 1<{(3³)*+1}* <(3)*+1 lim(2/2)+1} =1であるから lim [3x] lim- mil ならばlimh(x)=α =3 x→∞ x→∞ x Anie 3x 底が最大の項でく くり出す (*) A>1のとき,a<b ならば A°<A° 3 +1>1であるか ら, (*) が成り立つ。 -ら、 する。 よってtim(3*+59) - im5(2)' +1-3-1-5 x ・ら から

解決済み 回答数: 1
数学 高校生

(3)で、なぜk+3は5を含まないのですか?

基本 例題 46 不等式で表される集合 実数全体を全体集合とし,その部分集合 A, B, C を A={x|-3≦x≦5}, B={x||x|<4}, C={x|k-7≦x<k+3} (kは定数)とする。古代 (1)次の集合を求めよ。 .109 2015 (ア) B (イ) AUB (ウ) ANB (2) ACCとなるkの値の範囲を求めよ。 /p.80, p.81 基本事項 1, 3, 5 指針集合の要素が離散的な値 (とびとびの値) でなく連続的な値であるときも,その集合を 視覚化するとよい。 この問題のように, 全体集合が実数全体の場合, ベン図ではなく、 集合を数直線で表すと考えやすい。 解答 その際,端点を含むときは,含まないときは を用いて, とくの違いを明確にしておく (p.63 参照)。 例えば, P={x|0≦x<1} は右の図のように表す。 CHART 集合の問題 図を作る (1)(ア)|x|<4から -4<x<4 よって, B={x|-4<x<4} であるから 0 1 x ー <x<c (cは正の定数) の解は -4 4 x -c<x<c B={x|x≦-4, 4≦x} (B={x||x|≧4} でもよい) (イ) A,B を数直線上に表すと, 右の図のようになる。 - よって AUB={x|x≦-4,-3≦x} (ウ) 右の図から BB- -A- -4-3 45 x <x<-4, 4<xは誤り。 端点を含まない範囲の集 合の補集合は,端点を含 む範囲の集合である。 ← ○ 補集合は ● A∩B={x|4≦x≦5} (2) ACC が成り立つとき, A, Cを数直線上に表すと, 右の図のようになる。 ゆえに, 全にk-7-35k+3x ACCとなるための条件は,804 ② k-7-3 ①,k+3>5 が同時に成り立つことである。 ①から k≦4 ②から k>2 共通範囲を求めて 2<k≦4 A (2) ①には等号がつくが ②には等号がつかない ことに注意。 k-7=-3 のときは,-3はAの要 素でもCの要素でもあ 。 +3=5のときは、 要素であるが Cの要素ではない。

解決済み 回答数: 1
数学 高校生

赤マーカーの部分がなぜこうなるのかわかりません。※ (①〜④)の部分 教えて下さい🙇‍♂️

7 極限が存在するように定数を定める 2x2+ax+a+1 (ア) lim- =bと書けるとき, α = b= 」である. x-2 x²+x-6 (中部) (イ) αを実数とする. a= ] のとき, lim (4x'+x+ax)は有限な値 」をとる. →+∞ (関西大 社会安全, 理工系) 分数式の極限が存在するとき 分母0のとき, 分子 分母 は分子→0でなければ発散する。つまり。 分母 (分母→0で →有限のとき,分子=分子 分数式の極限が存在するとき, 分母→0なら分子→0となっていなければならない. 分子 -×分母→有限×0=0, と説明することもできる 分母 精密に調べる前に (イ)では,“分子の有理化”をするが,変形する前にαの符号を調べておこう。 lim√42+xなので, a≧0のときは与式は∞に発散してしまう。よって&<0でなければならな X100 このときはもは 00-00 不定形では? いことがまず分かる.また,x→∞を考えるときはとしてよい.x2=|x|=xなどとすることが できる. ■解答 SMART (ア) →2のとき, 分母=x²+x-6→4+2-6=0であるから, 分数式の極限値 bのとき,分子→0でなければならない. 覚えない よって, 2・22+α・2+α+1=0であるから, a=-3 2x2+ax+a+1 2x²-3x-2 このとき, (x-2) (2x+1) x2+x-6 x2+x-6 (x-2)(x+3) 2x+1 5 (2 =1 x+3 x-2 5 =1 ← <3a+9=0 する ←分母分子とも, x=2のとき0 なので,ともに2を因数にも (因数定理) r-2で約分され て不定形が解消する. (イ) lim√42+x=+∞であるからa < 0 である. →+∞ (42+x)-(ax)2 √2+x+ax=- √√4x²+x-a ax (4-a2)x²+x (4-a²)x+1 ( 参照. √√4x²+x+ax の分子を有理化 = == √√4x²+x-ax 4+ a ・① 分母が0以外の値に収束するよ IC うに、分母分子をxで割った。 ④ のとき,①の分母→2-α(0) となるから, ①が有限な値に収束する とき, 4-α2=0 1 a <0によりα=-2であり, lim ① = x178 √A 2+2 -a 4 4-α>0のとき ①→∞ 4-2<0 のとき ①→-8

解決済み 回答数: 1