学年

質問の種類

化学 高校生

化学の問題教えてください お願いします 写真の(3)、(4)、(5)の問題をそれぞれ途中式も含めて教えてください。 よろしくお願いします

〔注意〕 必要があれば,原子量は次の値を用いよ。 H, 1.00; C, 12.0; N, 14.0%; O, 16.0; Si, 28.0 次の文章を読み, (1)~(5)の問いに答えよ。 気体の質量をw[g], モル質量をM [g/mol] とすれば、その物質量はア [mol]である。気体の圧力 を P〔Pa〕,体積を V〔L〕,温度をT[K],気体定数を R [Pa・L/(K・mol)] とすると,理想気体の状態方程式 よりM=イ [g/mol] が得られる。 つまり、気体の圧力P, 体積V,温度T 質量w を測定すれば,そ の気体の分子量を求めることができる。 以上を踏まえて、常温常圧で液体である純物質Xの分子量を次の 実験から求めた。 小さい穴をあけたアルミニウム箔でふたをした内容積100mL 容器 (図1)を乾燥させ, 室温 (27℃)で質量をはかったところ 49,900gであった。 この容器に約2ml のXを入れ, 容器を図2 のように水に浸して加熱を始めた。 30分加熱すると容器内の液 体が見られなくなり、容器内はXの蒸気で満たされた。 この時 の水温は97℃, 大気圧は1.00 × 105 Paであった。 容器を取り出 して外側に付着した水を乾いた布でよく拭き取り,その容器を室 温 (27℃) まで放冷して再び質量をはかったところ 50.234gであった。 図1 ・小さい穴 -アルミニウム箔 ・内容積100mL の容器 水 図2 Xの蒸気を理想気体とみなし、 気体定数を8.31 × 103 Pa・L/(K・mol) とする。 放冷後に容器内で凝縮した Xの体積は無視できるものとする。 X の蒸気圧は27℃で 0.20×105 Pa, 97℃で2.00×105 Pa である。 (1)空欄とイに適した式を答えよ。 (2) 空気は、窒素と酸素が物質量の比4:1で混合した気体と考えられる。 空気の平均分子量を求め, 小数 第1位まで記せ。 導出過程も記せ。 (3)下線部で物質Xの質量を測定する必要がない理由を50字以内で記せ。 (4) Xの蒸気圧を考慮せずに分子量を求め, 整数値で答えよ。 (5) Xの蒸気圧を考慮して分子量を求め, 整数値で答えよ。 導出過程も記せ。

回答募集中 回答数: 0
数学 高校生

数Ⅱ黄チャート 高次方程式 基本例題62を別解2の方法で解かなきゃいけないんですけど、解き方を忘れてしまったので、解説お願いします🙇

104 基本 例題 62 解から係数決定 (虚数解) 00000 3次方程式 x+ax²+bx+10=0 の1つの解がx=2+i であるとき, 実数 の定数α, bの値と他の解を求めよ。 (山梨学院大 p.98 基本事項2.基本61 解 CHART & SOLUTION x=αがf(x)=0の解⇔f(α) = 0 代入する解は1個(x=2+i) で, 求める値は2個 (αとb) であるが, 複素数の相等 A, B が実数のとき A+Bi=0 A = 0 かつ B=0 により,a,bに関する方程式は2つできるから, a,bの値を求めることができる。 また,実数を係数とするn次方程式が虚数解αをもつとき,共役な複素数も解であるこ とを用いて,次のように解いてもよい。 別解 2αとが解であるから, 方程式の左辺は (x-α)(x-2) すなわち x-(a+α)x+a で割り切れることを利用する。 別解 3 3つ目の解をkとして, 3次方程式の解と係数の関係を利用する。 x=2+iがこの方程式の解であるから ここで, (2+i=2°+3・2'i+3.2i+i=2+11i, (2+i)+α(2+i)+6(2+i) +10=0 (2+i)=22+2・2i+i=3+4i であるから 2+11i+α(3+4i)+6(2+i) +10=0 iについて整理すると 3a+26+12,4α+6+11 は実数であるから 3a+26+12+(4a+6+11)i = 0 3a+2b+12=0, 4a+b+11=0 これを解いて a=-2,b=-3 ゆえに、方程式は x-2x2-3x+10=0 f(x)=x-2x2-3x +10 とすると f(-2)=(-2)-2-(-2)2-3-(-2)+10=0 よって, f(x) は x+2 を因数にもつから f(x)=(x+2)(x²-4x+5) したがって, 方程式は (x+2)(x-4x+5)=0 x+2=0 または x2-4x+5=0 x2-4x+5=0 を解くと x=2±i よって, 他の解は x=-2, 2-i 別解 1 実数を係数とする3次方程式が虚数解 2+i をもつ から,共役な複素数 2-iもこの方程式の解である。 よって,x+ax²+bx +10 は{x-(2+i)}{x-(2-i)} すなわち x4x+5で割り切れる。 mfx-2=i と変形して 両辺を2乗すると x2-4x+5=0 これを利用して x+ax²+bx+10の次数を 下げる方法 (別解 1の3行 目以降と同じ) もある。 (p.93 基本例題 55 参照) この断り書きは重要。 A, B が実数のとき A+Bi=0 ⇔ A=0 かつ B=0 ← 組立除法 1-2-3 10-2 -2 8-10 1-4 50 の部分の断り書きは 重要。

回答募集中 回答数: 0
数学 高校生

なぜ第1象限で接したとき最大なのですか?

x, 2 領域と分数式の最大・最小 yが2つの不等式 x-2y+1≦0, x2-6x+2y+3≦0 を満たすとき, |最大値と最小値, およびそのときの x, yの値を求めよ。 y-2 y-2 x+1 の ・基本 122 連立不等式の表す領域Aを図示し, 指針 x+1 =kとおいたグラフが領域 Aと共有点をも つようなんの値の範囲を調べる。 この分母を払ったy-2=k(x+1) を通り,傾きがんの直線を表すから、傾きんのとりうる値の範囲を考えればよい。 (1,2) CHART 分数式 y-b 最大 最小 y-b x-a =kとおき, 直線として扱う x-a x-2y+1=0 ①, x2-6x+2y+3= 0 2 YA 解答とする。連立方程式①,②を解くと P (x,y)=(1,1) (4,212) 5 ② -=kとおくと ゆえに、連立不等式x-2y+1≦0, x2-6x+2y+3≦0 の表 す領域 Aは図の斜線部分である。 ただし, 境界線を含む。 y-2 3 (3 2 2 y-2=k(x+1) (3) RY x+1 すなわち y=kx+k+2 ③は,点P(-1,2)を通り, 傾きがんの直線を表す。 図から, 直線 ③が放物線 ②に第1象限で接するとき この値は最大となる。 ② ③からyを消去して整理すると x2+2(k-3)x+2k+7=0 このxの2次方程式の判別式をDとすると D 4 =(k-3)2-1 (2k+7)=k-8k+2 直線 ③が放物線 ②に接するための条件はD=0であるか ら, k2-8k+2=0 より k=4±√14 第1象限で接するときのkの値は k=4-√14 このとき、接点の座標は (√14-1, 4√14-12) k(x+1)-(y-2 = 0, x=-1, y=2のときん についての恒等式になる。 →kの値に関わらず定 点 (1,2)を通る。 k=4+√14 のときは, 第3象限で接する接線と なる。 次に,図から直線 ③が点 (1, 1) を通るとき,kの値は最 小となる。このとき k= 1-2 = -1/ Ak= y-2 ソニに代入。 1+1 よって 2 x=√14-1, y=4√14-12 のとき最大値 4-√14; x = 1, y=1のとき最小値- x+1 0r2+4x-y+2≦0 を満たすとき の最大値 x-2 201 3章 1 不等式の表す領域

回答募集中 回答数: 0