学年

質問の種類

英語 高校生

長文どなたか教えてほしいです。 不安なんで…

ロ には 唱】 火のスピーチ放入を読んで、下紀の癌に和えなさい。 なおの人た家 本文の後に注があります。 As an old science reporter Tnd myselfin a diHfenlt position todai 0 Tighrtech executives on the topic of artifcial inteligence or AI Fnn surecoll 際。 far more about AI than 1 do. Stil. 1 think I can contribute some historical perspectHVe. Thave been writing science columns since many cf you were kids ( Z ) Hmrote my frst column on AT back in 1963。 Tm( イ ) because when T say *artifcial intelhgence"Tm talking about something that Tm not sure really exists. Those of you who have read my articlealand books on the subject know that Tbehieve in what we call imealk AT' and that 1 aminotieal onvineed by what we call srongALy oto Whats the difference? Lets say we program a computer to say Rhank youl in situations where real people would feel grateful. 1 think we could make eally sound like a thankful person。 Tm sure that such a machine and tuned so well that it could fool me were blindfolded But here's the question: Did the program actually feel thankf me? Or did the team who wrote the program thank me? Was According to the strong AL approach, the computer really couldibe ex According to weak AI, iCs just a machine making sounds。 Tim reminded of an old classic comedyy routine imagined a future world in which computers made 。 people really worried about that in the 1960s. In this ima handled every decision that humans didmt like making. One fmring other computers. So the comedy routine consists of a conm ose computer ecplaine to worker computer why itmust be fred The reason this comedy routine is interesting js not just bec because it expresses fears about strong AI。 ICs int 50 years ago- That's right。 a halfrcentury ago。 people uman decisions.They thoughtit might happ8mi the future.( ウ ).the predicted robotdominant、 Im my opinion, no matter how impressed none of us realiy believes that truly selfraware di exist. Tknow youre ll experts on AI but ileEs rogram, no matter how sophisticeted,( 王 ) marmyi jn or reject God. or say “Tlove you and mean it W cperatipg the machine-or who wrote the Dio As a real. thinking person who has obaerved tk research for many yearsu Tbelieve there will alaya bela efieve that no matter how sophisticated ATbeoon as a thinking person。T also know that 1 can be wi the future of science. Perhaps momeday those of yo

未解決 回答数: 1
英語 中学生

(1)(3)-aがわかりません。 教えてください。

STEP UP 問 題 + の英を疲んで。 あとの各則いに答えなSU、 One dawr MTanaami learned about ttedhnology in Mir Tanakre sdience class_ Mi Tanaka seid to te rudenta "Hm Japan a lot of irobots are used in many places now [ ーー Manami said 1 know some robots can walk and then eo *md uee their hands* NMr Tanak said,Yes。 Peomle are alvays trying to male better robots.* 了 0 Yanami became interes "crested in new technologies。 so aer school ahe earned about them in the| Tee he eeW Hroshi_ one of her mtende and they wared taiking auow technologies Hiroshi said, enjoyed Mr Tunaks science dass tedayr MIanami said、"Metoo. 1 think technologies will become more *advaneed in the future Finoshi said、 1 thtnk so to Then he showed her a book and said。 "This book is really interesting to me. IEs about great sientists. They 3imwented new technologies. Tve lerned that sometimes we can get god dees tr new technologies from things around us* Manami said,“That sounds interesting. Oh。1 know one example. 時ave you heard about the *honeycomb structure?" Hiroshi said.^Wellit *is made of a lot of *hexagons, right2" Manami said, "Thats right。 When xmetals have a [ = joneycomb structure they are Hight。 and also they are very strong. So 。they ar used for a lot of things。 For example, they are used to make the *bodes ot airplanes" HHiroshi said, "didmt know that。Twant to learn more aboutthe |tomeionb aam hioneyeomb structure on the Internet* advanced 進ました invent一 一を発明する technology 科学技術 robot ロボット be made of一 からできている joneycomb structure ハニカム梅千(ハチの旧状の捕信) metal 金属 body (飛行機の)股休 airplane 隊行機 jexagon 六角形 に適するものをアーエから 1つ選び. 記号で答えなさい。 【 イ Now itis used in some places im Japan. エ They do many things for people ewery Gay J 本壇中の ア 7hey are only found in our houses. ウ Ithink we can live without robots. ) 下線部①の内容を, 日本語で答えなさい。 ( 役任和 同才を xyトュてし ド線部のについて, 次の⑨, ⑯の問いに答えなさい< F線部のように言える理由を, 日本語で答えなさい。 ( 5) 本文中で述べられている下線部の例を. 日本語で符えなさい。

未解決 回答数: 1
数学 高校生

大問1番教えてください

iT 韻ei 上そう 【テーマぅ>: フェルマーの最終定理 (数論) (数学A 整数) 論理回路 (数学T 数と式ノ数学A 整数の性質 3】 サイコロゲームの確率 (数学A 確率 時系列データの分析 (数学T データの分析 【テーマ5s】 スカイッリー (数叶1 三角比) EESOJ ブックレピュー 【テーマ 1 】「フェルマーの最終定理」 (数論) (数学A 整数) 尿題和] <原始ピュタゴラス数> ャ, z を「互いに素」な自然数とする. また, x? +y? = z2 を満たす自然数の解の組 *, , 2 を. 原始ピュタゴラス数という. 原始ピュタゴラス数に関して, 以下の課題に答えよ. (1) 原始ピュタゴラス数の例を 4 つ芝げよ. また, ぇ > のうち少なくとも 1 つは偶数である ことを証明せよ. (参考) 等式 (<の? + 4cp = (gq+の2 を用いて原始ピュタゴラス数が求められる. (②) (1)を踏まえ, ッ=2Y とおく. Y? =ご学・デ であることを示し, = と = は互いに素 であることを証明せよ. (③) 一般に, 互いに素な数どうしの積が平方数ならば, これらの数のそれぞれが平方数となる. このことと(② を踏まえ, 原始ピュタゴラス数の一般解を求めよ. 民証2 <FLT(4)の証明> 「 z7+yケニz7 (>2) を満たす自然数の解の組 (x, ヵ, z) が存在しない」 これはフェルマーの最終定理と呼ばれ, FLT(n) く Fermat sLast Theorem FLT> 〉 と表記 する.

未解決 回答数: 1