学年

質問の種類

物理 大学生・専門学校生・社会人

量子力学の問題です。 わかる方おられませんか

2. 外部磁場中の荷電粒子の量子力学、 Landau 準位 ベクトルポテンシャル A(t,x)、 スカラーポテ ンシャル (t,x) がある3次元空間の中を質量m、 電荷eをもつ荷電粒子の運動を考える。 その運動量 をp、 位置座標をェとすると、 荷電粒子を記述するハミルトニアンは以下で与えられる。 1 H(t, z,p) = -(p- eA(t, x))² + eo(t, x) 2m (1) (1) この荷電粒子を表す波動関数を重(t,x) としたとき、 確率密度と確率の流れの密度は、ベクトルポ テンシャルがない (演習問題No.1の) 場合に対し微分∇を 「共変微分」Dに置き換えることで 得られることが知られている。 p:=²=v*v, J:= {*D-(D)*} ここで、 2m D:= V-ie A, +∇ ・J=0が成立することを示せ。 とおいた。このとき、連続の方程式 (2) 電場E = -Vo-b と磁場 B = ∇×4が次の(ゲージ) 変換で不変であることを示せ。 at 以下電場はなく、静磁場のみがある場合を考え、磁場が向いている方向を軸とする: B = (0,0,B) Əx AA'′=A_∇入, 中→d=6+ at ここで、 入 = \(t,x) は任意のスカラー場である。 さらに荷電粒子の波動関数も同時に →=e-ie (5) と変換させた場合、 Schrodinger 方程式場=H(t,x, l∇)が変換した場に対しても同様に成 立することを示せ。 A = (0, Bx, 0) にとって、とzに依存しない波動関数 (x,y) を調べる。 (2) このとき、トの取りうる範囲を求めよ。 (3) この背景の下で縦と横の長さがLz, Ly の長方形状の十分薄い平板を0に {(x,y)|0 ≤x≤LT, 0≤y≤Ly} (7) のように置き、この平板内に束縛される荷電粒子の運動を調べる。 このとき、以下のように、ベクト ルポテンシャルを Landau ゲージ (8) (4) このことを、Schrodinger 方程式がゲージ変換のもとで共変性をもつor 共変的である、などという。 同じ量子数をもつ状態がなす部分ベクトル空間の次元のことをその状態の縮退度と呼ぶ。 (6) (3) 波動関数 (x,y)=(x)eikyのように変数分離して荷電粒子に対する時間に依存しない Schrodinger 方程式を解き、 固有関数とエネルギー固有値を全て求めよ。 ただし、演習のプリントで与えられ た特殊関数は説明なしに用いて良いものとし、 規格化も行わなくて良い。 (4) 波動関数 (x,y) は方向に周期境界条件を満たすとする。 v(x, y) = v(x,y + Ly) (5) 基底状態に対しょ軸の位置演算子の期待値 (z) をe, B,kを用いて表わせ。 また、 位置演算子の期 待値が平板内に存在する条件から、 基底状態の縮退度を求めよ。

未解決 回答数: 1
数学 中学生

平面特集①② 【すけさん】お願いします🙇‍♀️

問3の平面特集 ① 名前( カ 右の図において、 四角形 ABCD は平行四辺形である。 Eは辺BC上の点であり、 B: EC-32であり、 点はCDの中点である。 また、点Gは線分Bの中点であり、 点は線分 AEと線分PGとの交点である。 三角形 HGEをS. 四角形 HECF の面積をTとするとき、SとTの比を最も簡単 な整数の比で表しなさい。 GE:EC GH:HT 3=4 ( 右の図2のような長方形ABCD があり、点Eは辺BC上の点で, BB-4cm である。 また、 Fは辺CD を D の方向に延ばした直線上の点で, DF-2cmであり、辺ADと 線分EF との交点をGとする。 さらに、三角形ABGの面は三角形ABE の面積の2倍であり、四角形GECDの面積 は三角形ABE の面積の2倍である。 9/15 9/1600 このとき、 長方形 ABCDの面積を求めなさい。 DAEG=ABE DGECD=2ABE 右の図のように、三角形ABCの辺AB上に2点D, E, AC上に2点F, G を DF //EG//BC となるようにとる。 AB=6mm であり,三角形 ADF と四角形 DEGP と四角形 EBCG の面がすべて等しいとき、分 DEの長さを求めなさい。 A APDF DDEGF=DEB C G ) (右の図において、 四角形 ABCD は AB4cm, AD=5cm の長方形であり, 点Bは辺BCの中点 である。 また、点Fは辺AD上の点点G は CD 上の点で、 AP: FD=DG: CC-12である。 分 AC と 分 BFとの交点を H. 分 AC と線分EG との交点をとするとき、 四角形 HBE1 4 の面積を求めなさい。 AHHC 1:3 AI=IC. 25:3 75:30 図2 OBHI+DIBE 5xxx -x +4 15.2 = 6³² + ² = 65+ Wed, 4, 6, MAD HERPE AFPB-13 となるようにとり、線分 FCと線分EDとの交点をGとする。 このとき、 分 FCとGCの長さの比を最も簡単な整数の比で表しなさい。 2 KONZERT, HA R. C. DUROOMEDACON), - - ある。 BDC=6のとき, ∠ABDの大きさを求めなさい。 (カ) 右の図3のような平行四辺形ABCD があり, CD=10cmである。 辺AB上に点EをAB EB-41 となるようにとり。 分 EDと線分 AC との交点をF とする。 また、辺BC上に点GをAB//FGとなるようにとる。 このとき,線分PGの長さを求めなさい。 (ウ)右の図において、直線①は関数y=-2x+2のグラフである。 Aは直①と②との交点で あり,点Bはり軸上の点で、その座標は5である。 とりと直で囲まれた部分(色がついた部分)の内部および周上にある格子点 座標と 根がともに整数である点の個数を求めなさい。 なんで同上にあると分かる? →0からの直線がちになる から(345) 18個 1 図3. ① 図3 品 図3 (5₂0) (3 f) (0,3) (0.4) (0,5)

未解決 回答数: 1