学年

質問の種類

数学 高校生

写真の、ピンクの線を引いた箇所で、 (2)より、ベクトルOP=7/9ベクトルOQとありますが、どうやってそこに辿り着くのかがわかりませんでした。考え方を教えていただけませんか。🙇

考え方 (3)AQQB, OP:PQ をそれぞれ求めよ。 思考プロセス 見方を変える 線分 AF 上にある 題 23 交点の位置ベクトル [1] [5] 出 ★☆★☆☆ △OAB において,辺OAを2:1に内分する点をE,辺OBを3:2に内分 する点をFとする。また,線分AF と線分 BE の交点をPとし,直線OP と辺 AB の交点を Q とする。さらに,OA = 4, OB=6 とおく。 (1) OP を用いて表せ。 (2), を用いて表せ。 ma 24 (2)点Qは直線 OP 上の点であるから (-1) 4 1 -ka+ kb ... 3 OQ=kOP とおける OQ= (1-u)a+ub ...④ A AC 3点 0,P,Qが一直線上 BA にあるOQ=kOP また, AQ:QB=u: (1-u) とおくと a = 0.6 0 であり,とは平行でないから, ■係数を比較するときに は必ず1次独立であるこ とを述べる。 TO+AOR an ③ または ④に代入する。 音 3 1 ③ ④ k=1-u かつ k = u 3 9 3 これを解くと k = AO u= 7' ⇒ 線分AF をs (1-s) に内分するとする。 AME noiA 4- 3 平面上の位置ベクトル (1) P OP = (1-s)+s¯ =℗a+® b 線分BE上にある点に対する位置が よって 0Q = a+ -b 7 OP 4- 1 = a+ b 9 3 1次独立のとき (別解〕点 Q は直線 OP 上の点であるから 4a +36 OP= (1-1)+[ 線分BEをt (1 - t)に内分するとする。3=3 9 OQ = kOP=ka+kb ... 3 7 4a+36 = × 9 7 直線 OP 上にある とおける GA+DAS を 再 と変形して考えてもよい。 (2)点Q OQ=kOP = a+b 線分AB上にある JA 4 1 例題 25 参照。 点 Q は辺 AB 上の点であるから -k+ k = 1 1次独立のとき 9 3 ⇒ 線分ABをu: (1-u) に内分するとする。 ⑦ 9 4→ 3 k = より, ③ に代入すると OQ = (1-u)+u] = @a+@b Action» 2直線の交点の位置ベクトルは, 1次独立なベクトルを用いて2通りに表せ Fa+ J 7 14:9/7 7 点Qが直線AB上にあ 11-90 ⇔OQ=sOA+tOB (s+t=1) (3)2 AG 上にあるから JEDAQ:QB = 3 4a+36 =3:4 Q= 2- 5 (1) Eは辺 OA を 2:1 に内分す る点であるから OE=330 点Fは辺 OBを3:2に内分する Es Fenitory 点であるから OF = 2 3 F 7 ② ABCのAおめ (1- また,(2)より OP = -O 7 40A+ 30B P 3+4 9 Q ① B より点 Qは線分ABを F -SP ES OP:OQ = 7:9 となるから OP:PQ = 7:2 3:4に内分すると考えて もよい。 A M.Q AP:PF=s:(1-s) とおくと AB 点Pを△OAFの辺 AF の内分点と考える。 Point... 1次独立であることを述べる理由 OP-(1-s)OA+SOF = (1-s)a+sb 0 5 BP:PE=t:(1-t) とおくと ・ ① A ① ② より 2 1-s=' 241 これを解くと 5 2 t 4- よって OP = 1 + b 9 3 10 OP= (1-10B+108=1/214+(1-1)6 06=0であり,ことらは平行でないから t かつ 1s すると、もう一方に E ... 2 3 REST 点PをOBEの辺BE の内分点と考える。 F B 例えば, a = 0 のとき,2a+365a+3 が成り立つが、両辺のαの係数は等しく ない。 また, a = 26 (a としが平行)のとき,2a+56=3a+36 が成り立つが、両辺 のαの係数は等しくない。 このように,または6=0 または a / bであるときは, 係数が等しくならない 場合があるため、 ≠ 0 6 = 0, a と b は平行ではない」ということを述べている。 s=1-t 係数を比較するときに は必ず1次独立であるこ とを述べる ①または②に代入する。 ができるの 点をQとする。さらに, OA = 4, OB = を用いて表せ 2 0 練習 23 OAB において,辺OAを3:1に内分する点を E, 辺OBを2:3に内分する 点をFとする。 また, 線分AF と線分BEの交点をP, 直線 OP と辺 AB の交 AO(-1)-90 おく。 Jet

解決済み 回答数: 1
数学 高校生

交点の位置ベクトルの問題です。 解説を見ても理解できなくて… s:(1-s)にする理由はなんとなくわかりましたが 黄色マーカーのところ、どうしてこうなるのですか? 公式として覚えなければならないのでしょうか…。

400 基本 例題 26 交点の位置ベク |辺OBを3:4に内分する点をD, 線分AD と BCとの交点をPとし,直線OP △OAB において, OA=d, OB= とする。 辺OA を 3:2に内分する点をC 解答 と辺AB との交点を Q とする。 次のベクトルを a, b を用いて表せ。 (1) OP (2) 0Q [類 早稲田大]] 基本 28 37,66 指針 (1) 線分AD と線分 BC の交点P は AD 上にもBC上にもあると考える。そこで、 AP:PD=s: (1-s), BP:PC=t: (1-t) として, OPを2つのベクトルαを 用いて2通りに表すと, p.362 基本事項 5 から (とちが1次独立)のとき pa+qb=p'a+g'b⇒p=p', q=a' A-7 (2) 直線 OP と線分ABの交点 Q は OP上にもAB上にもあると考える。 CHART 交点の位置ベクトル 2通りに表し係数比較 (1) AP:PD=s: (1-s), BP: PC=t: (1-t) とするとA900 3 OP=(1−s)OA+sOƊ=(1−s)ã+¾³½³sb, 3 OP=tOC+(1−t)OB=¾-¯ta+(1−t)б -=1-t. (+) the de 2 a A £»¯¯¯ (1−s)ã+3¾³½³sb=¾³½³ tā+(1-t)b-A-DA-0 7 3 スー UP よって ++3 3 a = 0, 60, axであるから 1-s= s=1-t 断りは重要 これを解いて これを解いて7 10 S= t= したがって OP= れぞれた 13, 13 a+ 3. 13 13 (2) AQ:QB=u: (1-u) とすると また、点Qは直線 OP 上にあるから, OQ=(1-u)a+ub OQ=kOP (kは実数) とすると, (1) の結果から よって ①~ より、 00-(+)-+6 -> = 13 13 6 13 (1−u)ã+ub= -ka+ D 0 2 13 + a A + 3 kb 13 6 3 -k, u== 13 13 中点でなわ 2 したがって OQ==² ²a+1/15 06=0axであるから 1-u= これを解いて k=- 13³, u = 131 u= 3 断りは重要。

解決済み 回答数: 1
数学 高校生

この問題のような交点の位置ベクトルの問題って例えばこの問題のAP:PD=s:1-sのところをAP:PD=1-s:sとしても答えって同じになりますか?

50 基本 例題26 交点の位置ベクトル (1) | △OAB において,OA=d, OB=とする。 辺OAを3:2に内分する点をC, |辺OBを3:4に内分する点を D, 線分AD と BC との交点をPとし,直線OP 解答 と辺AB との交点を Q とする。 次のベクトルをà, を用いて表せ。 (1) OP |指針 (2) OQ 〔類 早稲田大〕 基本 (1)線分 AD と線分 BC の交点P は AD 上にもBC上にもあると考える。そこで、 AP:PD=s:(1-s), BP:PC=t: (1-1)として,OPを2つのベクトルを 用いて2通りに表すと, p.12 基本事項から 0, 0, xaと言が1次独立) のとき pa+qb=p'a+q'b>p=p', a=a' (2) 直線 OP と線分 AB の交点 Q は OP 上にも AB 上にもあると考える。 CHART 交点の位置ベクトル 2通りに表し 係数比較 (1) AP:PD=s:(1-s), BP:PC=t: (1-t) とすると よって OP=(1−s)OA+sŒD=(1−s)ā+ sb, (+) OP=tOC+(1−t)OB=ta+(1−t)b 3 5 3 5 3 3 1-t C 2 a A (1-s)a+sb=ta+(1−t)ỗ +8=-A-Da d=0, 60, ax6であるから1-s=2/23t, 22s=1-tの断りは重要。 BJ これを解いて S= 7 13 10 t= 13 したがってOP=116 3 a+ 13 13 (2) AQ:QB=u:(1-u) とすると OQ=(1-u)a+uo また,点Qは直線 OP 上にあるから, 0 3 6 → a+ 13 OQ=kOP (kは実数) とすると, (1) の結果から よって 6 ka+ OQ=k(3 à +336) = kā + 13kb (1-u)a+ub= kā+3kb a = 0, 50, axであるから 1-u= 2 13 a 6 Au- -ka+ 13 13 6 13k, u=33k 13 の断りは重要。 これを解いて k= u= Ha 3 したがって 0Q= a+ +1/36 練習 OAB において,辺OA を2:1に内分する点をL,辺OBの中心 26 AM の交点をPとし、直線QP B

解決済み 回答数: 1
理科 中学生

この(2)の答えがオになるのが理解できません。 解説を見てF'P1':P1'Q1'=8:5というのは理解できるのですが、それがどう答えに繋がるのかが分かりません。 どなたか教えて下さい。🙇

難関入試対策 思考力問題 Qo Solution ●次の文章を読み、あとの問いに答えなさい。 とつ 右の図は、凸レンズの左側に物 体を置いたとき, 凸レンズの右側 に実像ができたようすを表してい 物体 る。このとき, 凸レンズの中心と 物体でつくる △OPQ と, 凸レ ンズの中心と像でつくる △OP1 Q1 そうじ との間には相似の関係があること がわかる。 きょり いま,大きさが10cmの物体 PoQo を凸レンズとの距離が80cmのところに置 くと、実像 P Q は凸レンズから20cmのところにできた。このとき, 実像 P,Q1 の大きさは(①)cmであった。この状態から凸レンズを(②)cmだけ左へ 動かすと,実像 P,Q, と同じ位置に実像 Pi'Q1' ができた。このとき実像 P,'Q'' の 大きさは(③)cmであった。 Po 焦点F イ ②30, ③10 オ②60,③40 第1章 ウ ②40,③15 カ ②70,③90 O AD.O. が相似であることから, OP:OPP R1 くうらん (1) 空欄 ① に入る数値を答えなさい。 (2) 空欄②③に入る数値の組み合わせとして正しいものを、 次の中から選び記号で 答えなさい。 ア ②20, ③6.7 エ②50,③23.3 KOP Level 3 R2 【大阪桐蔭高 - 改】 Key Point △ABCと△DEF において対応する2組の角がそれぞれ等しいとき, △ABCと△ DEFは相似 (同じ形) であるという。 対応する辺の長さの比は等しくなり, AB:DE= BC: EF=AC: DF がなりたつ。 焦点F'P1 光軸 実像

回答募集中 回答数: 0