学年

質問の種類

数学 高校生

この問題で、なぜ縮尺が変わることでtanθの値も変わるのか理解できません。教えてください!

巻末 29. 現実事象への応用 87 例題492分・6点 以下の問題を解答するにあたっては,必要に応じて巻末の三角比の表を用 いてもよい。 太郎さんと花子さんは,キャンプ場のガイドブックにある地図を見ながら、 地点Aから山頂Bを見上げる角度について考えてい 図 1 山頂 B 鉛直方向 キャンプ場 水平方向 A 0 図1の日はちょうど16°である。しかし,図1の縮尺は,水平方向が 4 であるのに対して、 鉛直方向は 1 25000 1 であった 100000 実際にキャンプ場の地点Aから山頂Bを見上げる角である∠BACを考 えると,tan/BAC はアイウエとなる。したがって,∠BACの大き さはオ。ただし、目の高さは無視して考えるものとする。 オの解答群 3° より大きく 4° より小さい ① 4°より大きく5° より小さい ② 48°より大きく49° より小さい (3) 49°より大きく50° より小さい ④ 63°より大きく64° より小さい ⑤ 64°より大きく65° より小さい 解答 図1において BC AC =tan 16° 実際の AC, BC の長さをそれぞれb, a とすると, 縮尺 を考えて AC= b a BC= であるから 100000 9 25000 a 25000 -=tan 16° b 2=1/tan 16° 100000 よって tan / BAC= a tan 16° b ■三角比の表を利用す る。 三角比の表より tan 16°=0.2867 であるから tan/BAC=1 -0.2867=0.071675=0.072 三角比の表より tan 4° = 0.0699, tan 5° = 0.0875 であるか ら4°<<BAC<5° ( ① )

解決済み 回答数: 1
数学 高校生

(2)が分かりません💦 特に黒丸でつけた➖が分かりません。

6 ある夏祭りで,参加した子供たちに配るお菓子を用意した。 1人に4個ずつ配ると28個余ることがわかったため, 1人に6個ずつ配ったところ,お菓子を 1個ももらえない子供が2人, お菓子をもらえたが6個に満たなかった子供が1人いた。 夏祭り に参加した子供の人数を人として,次の問いに答えなさい。 (1) 下線部 ①から, お菓子の数を x を用いた式で表しなさい。 ただし, 答えのみでよい。 (2)(1)と下線部 ②から,xについての連立不等式を作りなさい。 ただし, 答えのみでよい。 (3)夏祭りに参加した子供の人数は何人と考えられますか。 (2)の連立不等式を解いて,調べなさ い。ただし、途中の考え方もわかるように書くこと。 解答 (1) 人に4個ずつ配ると28個余るので,お菓子は (4+28) 個 EN 答 (4+28)個 (2) 下線部②においては,お菓子を1個ももらえない子供が2人,1個以上5個以下もらえた子供が 1人... (☆) なので, 6個もらえた子供が (x-3) 人いたといえる。 (1)よりお菓子の数は (4+28) 個なので, (☆)の子供がもらった個数について, 1≦(4+28)-6(x-3)≦5 と表せる。 . 木 答 1≦ (4+28)-6(x-3)≦5 【別解】 お菓子の数は6(x-3) 個より多く, 6(x-2) 個より少ないといえるので, 6(x-3) <4z+28/6(x-2) ... (◇ とも表せる。 ae al (8 (3)(2)より,不等式 1≤ (4m+28)-6(x-3)≦5 を解く。 1≦-2x+46≦5 (1≤-2x+46 ③ -2x+46≤5 ③より, 2x 45 0x02 ISS (S) ④より, x≦22.5 .....⑤ -2x-41 x≥20.5 .......⑥ ⑤ ⑥より 20.5≦x≦22.5 である。 は整数なので,r=21, 22 すなわち, 21人または22人である。 【別解】(2)の(◇)の不等式を解くと, 20<x<23 である。 これを満たす整数は21と22 である。 答 21人または22人

解決済み 回答数: 1
数学 高校生

この問題の別解の解き方なんですが n🟰17のとき2分の1n(n-1)は272になると思うんですけどこれがn-1軍め の最後の番目ということですよね?そしたら273番目がn軍目の1番最初になり そこから302番ー273番をしても15にならないと思うんですがどこの考え方が間違っ... 続きを読む

奇こ (2) 差 (3) 452 基本 例 29 群数列の基本 n個の数を含むように分けるとき (1) 第n群の最初の奇数を求めよ。 (3)301は第何群の何番目に並ぶ数か。 奇数の数列を1/3,5/7, 9, 11/13, 15, 17, 19|21, このように、第 00000 (2)第n群の総和を求めよ。 [類 昭和大 p.439 基本事項 もとの数列 群数列では、次のように目 指針 数列を ある規則によっていくつかの 組 (群) に分けて考えるとき,これを群 数列という。 区切り れる [規則 る 区切りをとると もとの数列の 目すること群の最初の数が 群数列 がみえてくる 数列でいくと 目が ① もと ↓ ② 第 数列の式に代 見則 の個数は次のようになる。 上の例題は 群第1第2 第3群・・・・・・・・ 1 | 3,57,9,11| 第 (n-1) 群 第n群 初項 (n-1) 18 n個 公差2の 個数 1個 2個 3個 等差数列 11n(n-1)個 11n(n-1)+1番目の奇数 (1) 第k群の個数に注目する。 第k群にk 個の数を含むから,第 (n-1) 群の末頃ま でに{1+2+3++(n-1)} 個の奇数が 第1群 (1) 1個 3 77 ある。 よって、第n群の最初の項は, 奇数の数列 1, 3, 5, の 第2群 第3群 第4群 13, 15, 17, 19 第5群 21, 59 2個 9, 11 3個 4個 {1+2+3+......+(n-1)+1)番目の項で ある。 {(1+2+3+4)+1} 番目 検討 右のように、初めのいくつかの群で実験をしてみるのも有効である。 (2)第n群を1つの数列として考えると、求める総和は, 初項が (1) で求めた奇数 差が 2 項数nの等差数列の和となる。 (3) 第n群の最初の項をan とし,まず an≦301<ant となるnを見つける。 nに具 体的な数を代入して目安をつけるとよい。 CHART 群数列 数列の規則性を見つけ、区切りを入れる ② 第群の初項・ 項数に注目 (1) n≧2 のとき,第1群から第 (n-1) 群までにある奇数 第 (n-1) 群を考えるか 解答 の個数は 1+2+3+(n-1)=1/12 (n-1)n ら,n≧2という条件が つく。 よって,第n群の最初の奇数は (n-1)n+1番目の+1」 を忘れるな!!

解決済み 回答数: 1
数学 中学生

分からないのでわかる方いたら、解説お願いしますm(_ _)m

10 関数 y=ax2 ✓チェックコーナー 中学で学習したこと 1 関数 y=ax² yはxの2乗に比例し、x=3のとき y = 18 であるとき ポイント xの式で表すと y=l ] x=2のときy=[ 2 関数y=ax のグラフ (1) 関数 y=ax のグラフを[ ]という。 (2) グラフは [ ]を通り, [ ]軸について対称。 (3) α > 0 のときは, [ 開いた形。 ]に開いた形α 0 のときは [ (4) αの値の絶対値が小さいほど, グラフの開き方は [ 51 関数y=ax のグラフが点 (2,-4) を通るとき、 次の問に答えな さい。 (1) α の値を求めなさい。 y 0 x 2 ]に 0 [増] ]。 (2)この関数のグラフをかきなさい。 -6- (3)この関数のグラフは,点(-5,m) を通る。 m の値を求めなさい。 -8 052 右の図の(1)~(4) は下のテ〜 エ の関数のグラフを示したものである。 (1)~(4) はそれぞれどの関数のグラフか ⑦ y=x2 ①y=-2x2 ⑦y= H A 12 23 x2 -10 ·12 (1) (3) (4) (2) y = ax¹ a> o yはxの2乗に比例し 153 で表しなさい。 x=-3のとき y=3であるとき yをxの式 関数 y = 2x で, xの値が1から めなさい。 3)関数y= めなさい。 1から3まで増加するときの変化の割合を求 -xで,xの変域が2≦x≦5のときのyの変域を求 4)関数y=ax2 で, xの値が4から2まで増加するときの変化の割合 は3である。の値を求めなさい。 5) 関数 y=ax2 で, xの変域が-1≦x≦3のとき, yの変域が 0≦ys6 の値を求めなさい。 である。 α 154 右の図のように、関数y= 1 2 xのグラ 上に, x座標がそれぞれ3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, 座標は3である。 次の問に答えなさい。 (変化の割合) _yの増加量) ( xの増加量) 変化の割合は、 1次関数 y=ax+bで は一定だが、 数y=axで は一定ではない。 (3)y の変域を 求めるときは、 グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず 物 と直線の交点 A,Bの座標を 求める。 直線AB の式を求めなさい。 <座標に目もりが 2 △AOBの面積を求めなさい。 ないが、放物線 線分AC 上の点で, △AOBAPB となるような点Pをとる。 点Pの がどちら側に いているか 開 座標を求めなさい。 き方の大きさは どうかから考え ると,答えられ x る。 < (2) AAOB & y 軸で2つの三角 形に分けて考え るとよい。 (3)直線AB と 平行で点を通 る直線と線分 AC との交点を 考える。 高校で学習すること 高校では, 関数 y=ax2 のグラフをx軸方向に, y 軸方向にだけ平行 移動させたグラフ(頂点が原点0にない放物線) を学習する。(数学1 ) y=ax W 0 原点 -(2.α) I チェック 1 2x2, 8 2 (1) 放物線 (2) 原点 (0),y (3) 上下 (4) 大きい

回答募集中 回答数: 0