学年

質問の種類

化学 高校生

化学の実験の問題です この問題の解き方をどなたか分かる方教えていただけませんかお願いします😭🙏 答えは問1:7.5×10の-3乗mol 問2: 56、問3: Bです

ISHS 【11】 ある高校生が、 カセットコンロ用ガスボンベを買うために量販店へ出かけた。 売り場に着くと、カセット コンロ用ガスボンベには 「ノーマル」と「ハイパワー (寒冷地仕様)」の2種類があることがわかり、 含まれてい る燃料ガスの違いに関心を持った。 そこで、授業で学習したアボガドロの法則を利用して、 ガスボンベに含まれる 燃料ガスの分子量 (混合気体の場合には、 平均分子量となる) を調べるために、表の3種類のボンベA~Cについ て、それぞれ操作1~3を行った。 ただし、 実験中の室内の温度と圧力は常に一定であるものとし、水蒸気の影響 や気体の水への溶解は無視できるものとする。 操作1 操作2 電子天秤を用いて、 ボンベの質量m[g] を測定した。 水槽に水を入れて、水を満たしたメスシリンダーに、 水上置換によって ボンベ中の気体を捕集し、 目盛りV [mL] を読んだ。 電子天秤を用いて、 実験後のボンベの質量m2[g]を測定した。 操作3 この実験の結果は、下表の通りであった。 ボンベ A ボンベ B ボンベ C 問1 問2 ボンベの種類 窒素ボンベ カセットコンロ用ガスボンベ カセットコンロ用ガスボンベ 仕様 ノーマル ハイパワー (寒冷地仕様) ボンベ [mi [g] m2 [g] 252.22 252.01 315.59 315.17 101.77 101.41 V[mL] 180 180 160 ボンベAの実験結果から、メスシリンダーに捕集した窒素の物質量を答えよ。 [ 有効数字2桁] ボンベとボンベBの実験では同じ 180mLの気体を捕集している。 アボガドロの法則より、 その中に 含まれる気体の物質量は同じであると考えられる。 このことを利用して、 ボンベBに含まれる気体の分子量 を求めよ。 [有効数字2桁] 問3 同温・同圧の条件下で、含まれる気体の分子量が大きいのは、ボンベBとボンベCのどちらだと考えられる か。 捕集した気体の密度を活用して考えること。

回答募集中 回答数: 0
数学 高校生

61.1 このような記述でも大丈夫ですよね??

0000 式という えると の2 a+by^- 201 X [日本 2行目の式 1 x 解答 を断ってから 一割る。 なお (1)xを1の3乗根とすると 程式の左 ゆえに x³-1=0 (左辺=2 したがって を入れ 1-1- x この式と 1 ot Hit 基本例題 61 (1) 1の3乗根を求めよ。 (2)1の3乗根のうち, 虚数であるものの1つをとする。 (ア)2も1の3乗根であることを示せ。 1 えることが 1 指針 (1) (2) (1) w²+w³, +1+1, (w+2w²)²+(2w+w³²)² iznenkok. 2 (2) ア @= これを解いて, 1の3乗根は -1+√3i 2 練習 61 1の3乗根とその性質 基本58 3乗してαになる数,すなわち、方程式x=αの解を,αの3乗根という。 (1)で求めた方程式x=1の虚数解を2乗して確かめる。 (ア) (イ)は方程式x²+x+1=0, x=1の解→ ²+ω+1=0, ω²=1 2 -√3 i 4 口を よって, w2も1の3乗根である。 -91+2 (1) ω は方程式x+x+1=0, x=1の解であるから ω'+ω+1=0,ω'=1 よって x-1=0 または x²+x+1=0 -1+√3 i 2 とすると i 0 ² = ( = 1 + 2√³²)² =. 1-2√3 i+3i²_-1-√3i 2 とすると x³ =1 「POINT」 1. w²=(1-√3i)°_1+2√3i+3p _ _1+√3i 2 141 w² (x-1)(x²+x+1)=0 w²+w=(w³)² w+(w³) ² w²=w+w²=-1 w+1+w² w² よって また -=0 W ω'+ω+1=0から, w2=-ω-1 となり (w+2w³)²+(2w+w³)² = {w+2(-w-1)}²+(2w-w-1)² =(-w-2)²+(w-1)²=2w²+2w+5 +1= =2(-ω-1)+2+5=3 00000 (1) 200+50 (3) (w200+1)100+(ω100+1) 10 +2 3次方程式の解は複素数の 範囲で3個。 ω はギリシャ文字で、 オ メガ」と読む。 (検討) x=1の虚数解のうち、どち としても,他方が となる。よって、1の3乗根 it 1, w, w¹ ω'=1 を利用して, 次数を 下げる。 ω=-ω-1 を利用して、 次数を下げる。 12(w²+w+1)+3=2-0+3 としてもよい。 1の虚数の3乗根の性質 ①2+ω+1=0 ② ω'=1 がx2+x+1=0の解の1つであるとき,次の式の値を求めよ。 1 1 w² p.110 EX44 99 2章 11 高次方程式

回答募集中 回答数: 0
数学 高校生

62.1 方程式の解の1つをwとしているので x^2+x+1=0をw^2+w+1=0としてしまうと 二次方程式の2つの解がwで表せるようになってしまうので条件 と合わなくないですか??

100 0000 基本例題 62 x+x+1で割ったときの余り f(x)=x80-3x40 +7 とする。 の1次式 (1) 方程式x2+x+1=0の解の1つをω とするとき, f (w) の値をωの1 表せ。 (2) f(x) を x2+x+1で割ったときの余りを求めよ。 基本 53.61 重要 55 指針f(x) は次数が高いので、値を代入した式を計算したり、割り算を実行したりするのは い。 ここでは,これまでに学習した、次の方針に従って進める 高次式の値 条件式を用いて次数を下げる 割り算の問題等式 A =BQ+R の利用。 B = 0 を考える ω'+ω+1=0 (1) は x2+x+1=0の解であるから これを用いてまずの値を求め、その値を利用してf(ω) の式の次数を下げる。 (2) 求める余りはαx+b と表されf(x) = (x2+x+1)Q(x)+ax+b これにx=ω を代入すると f(w)=aw+b Q(x) は商 解答 (1) は x²+x+1=0の解であるから よって w²=-w-1, w²+w=-1 w²+w+1=0 また, 80=3・26+2, 40313+1 であるから (*) w³-1 3a+s=(w-1)(w²+w+1)=0 eee²=(a-1)=-(ω^+c)=(-1)=1) から1としてもよい。 は1の虚数の3乗根であ る。 f(w)=w8⁰-3w40 +7=(w³) ²6 w²-3(w³) ¹³.w+7 =126.(-ω-1)-3・13・ω+7=-4ω+6 (2) f(x) を x2+x+1で割ったときの商をQ(x), 余りをax+b (a,bは実数) とすると 練習 f(x)=(x2+x+1)Q(x)+ax+b ω'+ω+1=0であるから (1) から -4w+6=aw+b α, b は実数は虚数であるから a=-4, b=6 したがって 求める余りは -4x+6 f(w)=aw+b が成り立つ。 次数を下げて1次式に。 [参考] a b c d が実数, zが虚数のとき ① a+bz=0 ⇔ α = 0 かつ b = 0 ② a+bz=c+dz ⇔a=c かつ b=d [証明] [①の証明] (←) 明らかに成り立つ。 (⇒) b=0 と仮定するとz=- :=-1 このとき a=0 b=0 よって ② の証明は、(a-c)+(b-dz=0 として上と同様に考えればよい。 なお、上の①②は、p.62の①②を一般の場合に拡張したものにあたる。 2018をx²+x+1 で割ったときの余りを求めよ。 → (2) A=BQ+R 割る式B=0 を活用。 下の参考② を利用。 S 左辺は虚数,右辺は実数となるから矛盾。 基 3次 定業 指針 解 -18 (-1) すな これ よっ 左辺 した 別解 fC (x 右 こ し xC * E C

回答募集中 回答数: 0