数学 高校生 約15時間前 解説お願いします。 参考書の解説が何を言っているのかよく分からなかったので、教えていただきたいです。 とくに解説の初めの4行が分からないです。 よろしくお願いします。 123,*n を2以上の整数とする。 中の見えない袋に2n個の玉が入っていて, 真ち そのうち3個が赤で残りが白とする. A君とB君が交互に1個ずつ玉を取り 出して、先に赤の玉を取り出した方が勝ちとする。 取り出した玉は袋には戻 さないとする. A君が先に取り始めるとき, B君が勝つ確率を求めよ。 ( (東北大) 解決済み 回答数: 1
数学 高校生 約24時間前 ベクトルの平行条件 ーーーー ベクトルa≠0、ベクトルb ≠0 ベクトルa//ベクトルb⇄ベクトルb=kベクトルaとなる実数kがある。 ーーーー と習ったのですが、問題19の(2)解説では ベクトルa=kベクトルb となる実数kが存在する時。 と書かれてあり困惑しています... 続きを読む 19 2), 6=(x, 6) 次の2つのベクトルが平行になるように, xの値を定めよ。 *(1) a=(5, 教 p.22 例 8 (2) a = (3,x)=(-1,2) 解決済み 回答数: 1
数学 高校生 1日前 なぜ、a=7の時、nは2の2乗、3.7を因数に持つって何処で分かるのですか? どうやって、満たすとか分かるのですか? 以 問題4-8 20あわら いすみでする 難 次の条件(i)(ii) をともに満たす正の整数n をすべて求めよ。 (i) n の正の約数は12個。 (ii) nの正の約数を小さい方から順に並べたとき, 7番目の数は12 (東京工大) 方針 ポイントは3つあります。 ポイント ① (i) より,nの正の約数は12個なので,nの素因数分解の形は次の つのうちのどれかです。 問題4-7 と同様に考える ⑦n = p" ア n=p ←正の約数の個数は 12 n=pg ←正の約数の個数は 2×6 pq5 ⑦n=pg ←正の約数の個数は3×4 H n=pgre←正の約数の個数は2×2×3 (p, g, rは異なる素数) ポイント② したがって, nは2と3を因数にも 12はnの約数なので,nは12(223) の倍数です。 ということ 解決済み 回答数: 1
数学 高校生 1日前 □に入る数字がわかりません、OAベクトルやOBベクトルの表し方はわかったのですが、sやtの意味が分かりません、初歩的な質問かもしれませんが、よろしくお願いします 26 第1章 平面上のベクトル △OAB において,辺OA を3:1 に内分する点を C, 辺OBの中点をDとし, 線分AD と線分 BC の交点 をP とする。実数 s, t を用いて, OP =sOA+tOB と表すとき,次の□に適する実数は何か。 また, s, tの値を求めよ。 (ア) OP = sOA+□tOD 3 D P (イ) OP = sOC+tOB A B CONNECT 8 直線上にあるための条件 解決済み 回答数: 1
英語 高校生 1日前 英語文型についての問題です。 Q.次の各文のSを指摘しなさい。 1)The girl with long hair was standing at the school gate. 2)The church on the hill is very old. 答えは1) ... 続きを読む 解決済み 回答数: 1
数学 高校生 1日前 四角で囲ってある所の展開が良く分かりません😭🤦♀️ (2) =1+3+9 + ***** +3k-1 -3-1-(3-1) = = よって、 求める和は S.=2/12(3-1)= 1 (13-183) + = (1-8) — 3="s == k=1 1/3(3″-1) 2 3-1 2 n - \k=1 = 57 1 階差数列は1, 2, 3, 4, (3n+1 (3" +1 - 2n − 3) となるから, 解決済み 回答数: 1
数学 高校生 1日前 この問題わかる方 1-5 (6) 数列 1,1/18,2,1/18.1.3 1 2 4 3 3 ' 4, 2 2 サ において、 23 24 -が最初に現れるのは、第 セソタチ項で、 ス 2w+1 = ネ (7) 複素数平面上の点に対して、 z= とする。 wが虚軸上を動くとき点は、中心 半径・ その円を描く シテ 第364項は である。 トナ 解決済み 回答数: 1
数学 高校生 1日前 Σの問題で、最後の形が展開されていたり因数分解の形になっていたりしますよね どこまで求めればいいのでしょうか? (3) Ž (3k-()² kol 3 67 962-61+1 = 9. n (n+1) (24+1) f. h(4+1) +h = = f 2 2 3n (n+1) (2n+1) - bn (n+1)+2n 2 n{3(n+1)(2n+1)−6(n+1)+2 } 64²+94+32 4 {3 (2n²+ 3n+1)-64-6+23 2 n { bu² + 3n-1] 55 (1.42 (1) (261) 222 = K=1 =2. 2 3 th flant 「違い Zn (n+1)(2n+1) 解決済み 回答数: 2
数学 高校生 1日前 青線のところがわかりません!! 教えてほしいです🙏 (2)(x+1)(y+1)(xy+1)+xy=(xy+l+x+y)(xy+l)+xy " (a²-1) (62-12-4ab 7 xy+1をAにおきかえる (A txty) A + x y z = = A+ (x + y) A + xy (A + x) (x + y) {(x4 + () +x } { xy+1)₂+y} = (xy + x + 1 ) ( x y + y + ( ) 解決済み 回答数: 1
数学 高校生 1日前 数学Bの等差数列と等比数列の各項の席からなる数列の和の問題です。 解説で、なぜn-rが出てきたのかが分かりません。解説よろしくお願いします。(2)の問題です。 66 次の和 Sm を求めよ。 ¯ (1)* Sn = 1·1+2.3+3.32+4·3³ + ··· + n. 3"-1 . (2) Sn = 1·r+372 +53 +7+4 + ··· + (2n-1) (1) 解決済み 回答数: 1