学年

質問の種類

数学 高校生

この問題を解く時にkf+g=0を使うらしいのですが、なぜ片方の式にしか文字(今回だとk)がつかないのですか?

「基本例 812直線の交点を通る直線 2直線x+y-4=0 ...... ①, 2x-y+1=0 ...... たす直線の方程式をそれぞれ求めよ。 (1) 点 (1,2)を通る 00000 ②の交点を通り。 次の条件を満 (2) 直線x+2y+2=0 に平行 基本8 指針 2直線 ①,②の交点を通る直線の方程式として、次の方程式 ③を考える。 k(x+y-4)+2x-y+1=0 (々は定数) (1) 直線③が点(-1,2)を通るとして,kの値を決定する。 (2)平行条件ab2-a2b1=0 を利用するために, ③ を x, yについて整理する。 CHART 2直線f=0g=0の交点を通る直線 kf+g=0 を利用 は定数とする。 方程式 x+y-4)+2x-y+1=0 ...... ③ 2直線①②の交点を通る直線 を表す。 (1) 直線③が点 (-1, 2) を通るか ら -3k-3=0 すなわち k=-1 これを③に代入して -(x+y-4)+2x-y+1=0 すなわち x-2y+5=0 ① (-1,2) (2)③をxyについて整理して (k+2)x+(k-1)y-4k+1=0 直線 ③ が直線x+2y+2=0に平行であるための条件は (k+2) 2-(k-1)-1=0 よって k=-5 これを③に代入して -5(x+y-4)+2x-y+1=0 すなわち x+2y-7=0 別解として, 2直線の交 点の座標を求める方法 もあるが、 左の解法は今 後、重要な手法となる (p.168 例題 106 参照)。 検討 与えられた2直線は平 行でないことがすぐに わかるから確かに交 わる。 しかし, 交わる かどうかが不明である 2直線 = 0, g=0の 場合, k+g=0の形 から求めるには,2直 線が交わる条件も必ず 求めておかなければな らない。 ③表す図形が, [1] 2直線 ①②の交点を通る [2] 直線である ことを示す。 [1] 2直線の傾きが異なるから 2直線は1点で交わる。 その交点(x, y) は,x+y-4=0. 2x+1=0を同時に満たすから,kの値に関係なく, k(x+yo-4)+2x+1=0が成り 立ち, ③は2直線 ①②の交点を通る。 [2] ③ を xyについて整理すると (k+2)x+(k-1)y-4k+1=0 k+2=0, k-1=0を同時に満たすkの値は存在しないから,③は直線である。 なお、③は,kの値を変えることで, 2直線 ①②の交点を通るいろいろな直線を表すが、 ①だ けは表さない。 練習 2直線x+5y-7=0, 2x-y-4=0 の交点を通り, 次の条件を満たす直線の方程式 81 をそれぞれ求めよ。 (1) 点(-3,5)を通る (2) 直線x+4y-60に (ア) 平行 (イ) 垂直 133

未解決 回答数: 1
数学 高校生

infomationの2行目の式がなぜ2直線の交点を通る直線を表していると言えるのですか?

らず 基本18 ...... 基本 例題 78 2直線の交点を通る直線 2直線 2x+3y=7 直線の方程式を求めよ。 ・①, 4x+11y=19 123 000 ② の交点と点 (54) を通 Ip.115 基本事項 5. 基本 77 ―係数比較送) 一数値代入法 線の式が成立 よう。 CHART SOLUTION 2直線 f(x,y)=0,g(x,y)=0 の交点を通る直線 方程式 kf(x,y)+g(x,y)=0 (kは定数)を考える x, yで表される式を f(x, y) などと表す。 問題の条件は2つある。 [1] 2直線 ①,②の交点を通る [2] 点 (54) を通る そこで,まず,①,②の交点を通る直線(条件[1]) を考え,次に,この直線が点 (54) を通る (条件 [2]) ようにする。 3章 直線 比較法 -g=0がんの ⇒f=0,g=1 この基本例題 るように --4y=0, 1=0 の交点を すから、これ 三点が定点A =入法 当な値を代入 係数を0にす してもよい。 件の確認。 うらず 解答 kを定数とするとき, 次の方程式 ③は,2直線 ①,②の交点を通 る直線を表す。 (2x+3y-7)+(4x+11y-19) =0 ...... ③ ③が,点 (54) を通るとすると, ③に x=5,y=4 を代入して 15k+45= 0 よって (1) 11 19 11 0 73 k=-3 |-7|2 (2,1) 別解 2直線 ①,② の交点 の座標は (5, 4) よって, 2点 (21), (54) を通る直線の方程式は 19-1=4-12(x-2) 4 すなわち x-y-1=0 これを③ に代入すると-3(2x+3y-7)+(4x+11y-19)=0 整理すると x-y-1=0 INFORMATION 2直線の交点を通る直線 交わる2直線 ax+by+c=0,ax+by+c2=0に対して kax+by+c)+azx+bzy+c2=0 (kは定数)..... (*) は,kの値にかかわらず2直線の交点を通る直線を表している。 (ただし,直線 ax+by+c=0 は除く。) 2直線の交点(x,y) は,ax+by+c=0, azx+by+c2=0 を同時に満たす点であ るから,(*)はんの値にかかわらず成り立つ。 すなわち, (*)は2直線の交点を必ず 通る直線になる。 この考え方は直線以外の図形を表す場合にも通用するので,応用範囲が広い。 PRACTICE... 78 ③ 次の直線の方程式を求めよ。 (1) 2直線x+y-4=0, 2x-y+1=0 の交点と点 (-2, 1) を通る直線 (2) 2直線 x-2y+2=0, x+2y-3=0 の交点を通り,直線 5x+4y+7=0 に垂直 な直線

回答募集中 回答数: 0
数学 高校生

informationの3行目、なぜこの式が二直線の交点を通る直線を表しているんですか?

らず 2直線 2x+3y=7 基本 例題 8 2直線の交点を通る直線 ...... ①, 4x+11y=19 直線の方程式を求めよ。 CHART O SOLUTION 七較送 入注 成立 ●の 9=1 題 78 点 これ A です 「解答」 00000 ② の交点と点 (54) を通 p.115 基本事項 5. 基本 77 123 2直線 f (x,y)=0,g(x,y)=0 の交点を通る直線 方程式kf(x,y)+g(x,y)=0 (kは定数) を考える・・・・・ x,yで表される式をf(x, y) などと表す。 問題の条件は2つある。 [1] 2直線 ①,②の交点を通る [2] 点 (54) を通る そこで,まず, ①,②の交点を通る直線(条件[1]) を考え、次に,この直線が点 (54) を通る (条件 [2]) ようにする。 kを定数とするとき,次の方程式 ③は,2直線 ①,②の交点を通 る直線を表す。 k(2x+3y-7)+(4x+11y-19) =0 ③が,点 (54) を通るとすると, ③に x=5,y=4 を代入して 15k+45=0 ② 19 11 10 73/ よって k=-3 7|2 3章 別解 2直線①,② の交点 11 の座標は (2,1) (5,4) よって, 2点 (2,1) (54) > を通る直線の方程式は 19-1=4-12(x-2) 4 これを③に代入すると-3(2x+3y-7)+(4x+11y-19)=0 整理すると x-y-1=0 INFORMATION 2直線の交点を通る直線 交わる2直線 αx+by+c=0,ax+by+c2=0 に対して すなわち x-y-1=0 k(ax+by+ci)+azx+bzy+c2=0(kは定数) .... (*) は,kの値にかかわらず2直線の交点を通る直線を表している。 (ただし,直線 ax+by+c=0 は除く。) 2直線の交点(x,y) は,ax+by+c=0, ax+by+C2=0 を同時に満たす点であ るから,(*) はんの値にかかわらず成り立つ。 すなわち, (*)は2直線の交点を必ず 通る直線になる。 この考え方は直線以外の図形を表す場合にも通用するので,応用範囲が広い。 直線

回答募集中 回答数: 0