学年

質問の種類

数学 高校生

221.223.224が答えを見てもわかりません。 詳しく教えていただけると助かります。 また、場合の数と確率をとく時のコツがあれば教えて頂きたいです。

題 次の集 2 集合の要素の個数 (2) 113 : B 第1章 場合の数と確率 ② 221 デパートに来た客100人の買い物調査をしたところ, 商品Aを 買った客は 68 人, 商品Bを買った客は53人であった。 次のよう な客は,最も多くて何人か。 また, 最も少なくて何人か。 (1)A,Bの両方を買った客 (2)A,Bのどちらも買わなかった客 222 A={nnは48の正の約数}, B= {n|nは30以下の正の奇数}, C={n|n は 54の正の約数} とする。 このとき,次の集合の要素の個数を求めよ。 (1) A∩B, BC, CA (2) ANBOC (3) AUBUC c) 2231から20までの整数のうち、次の数の個数を求めよ。 (1)3,5,8の少なくとも1つで割り切れる数 (2)3でも5でも8でも割り切れない数 (3)3または5で割り切れるが,8で割り切れない数 母の 発展 224 ある大学の入学者のうち、他のa大学, b大学, c大学を受験 した者全体の集合を,それぞれA,B,Cで表す。 n(A)=65,n(B)=40,n(A∩B)=14,n(C∩A)=11, n(BUC)=55, n(CUA)=78, n(AUBUC)=99 のとき、次の問いに答えよ。 (1) c大学を受験した者は何人か。 (2)a 大学, b 大学, c大学のすべてを受験した者は何人か。 (3)a 大学, b 大学, c大学のどれか1大学のみを受験した者は 何人か。 ヒント 2242) まず, n (B∩C)を求める。

回答募集中 回答数: 0
数学 高校生

大門1わかりません

の数 る。 また、 n (P) は ∩B) =n(A)+n(B) ■は全体集合 I p.68 69 も参照。 方法 すべて求める。 目の要素がαの集 書き上げ、続いて、 ■の要素がもの集合、 ■合の順に書き上 によい。 りあり, Bの 方がる通り して求めよ。 © 2 集合の要素の個数の計算 全体集合を U = {1, 2, 3, 4, 5, 6,7} とする。 ひの部分集合 (1,3,5,6,7}, B={2, 3, 6,7} について, n (A), n(B), n (A) を求めよ。 Bが全体集合 Uの部分集合でn(U)=50, n (A)=30, (AUB), 集合A, (イ) ANB (ウ) AUB (エ) AnB n(B)=15, n(A∩B)=10 であるとき、 次の集合の要素の個数を求めよ。 CHART & SOLUTION 集合の要素の個数の問題 図をかいて ① 順に求める EN n(A)=n(U) -n (A) を利用する。 ② 方程式を作る 国の方針により, 求めやすいものから順に, 個数定理を用いて集合の要素の個数を求め n (AUB) =n(A)+n(B)-n (A∩B) を利用する。 ②は基本例題3を参照。 入ってないやつ (1) n(A)=5, n(B)=4 AUB={1,2,3,5,6,7} である からn(AUB)=6 = {24} であるからn(A)=2 n(A)=n(U)-n(A) (2) (7) (1) 10 (2) n =50-30=20(個) n(ANB)=n(U)-n(ANB) =50-10=40 (個) (AUB)=n(A)+n(B) - n(ANB) =30+15-10=35 (個) In(ANB)=n(AUB) =n(U) -n (AUB) -40% =50-35=15 (1) ・U 4 A 5 -U(50) A (30) 3 6 7 ANB (10) B OL 00000 2 B (15) p.264 基本事項 1 Js 265 1歳 1 ←左の図のような, 集合の 関係を表す図をベン図 という。 個数定理を利用。 集合の要素の個数 場合の数 ←補集合の要素の個数。 (A∩B)=15 であるとき、 次の集合の要素の個数を求めよ。 (ア) A (イ) ANB(ウ) AUB ド・モルガンの法則 A∩B=AUB (ウ)の結果を利用。 PRACTICE 10 (1) 上の例題 (1) の集合 U, A, B について, n(U), n(B), n(A∩B), n (AUB) を 求めよ。 (②2) 集合 A,Bが全体集合 Uの部分集合でn(U)=80, n(A)=25, n(B)=40, (エ) ANB

未解決 回答数: 1
数学 高校生

要素の個数を正確に求めれません😭 求める過程を教えてください!

00000 重要 例題 10 グループの人数と集合 (3つの集合) 人は人のうち、漁市に行ったことのある人は5人であり市に行けたことのあ 人は13人市に行ったことのある人は30人であった人は市と日市に行 たことのある人はx人, A市と C 市に行ったことのある人は9人, B市とC のある人は3人, A市にもB市にもC市にも行ったことのない人は28人であ 市に行ったことのある人は10人であった。市との市に行った。 基本 3. p.275 STEP UP) った。このとき、xの値を求めよ。 CHART & SOLUTION 集合の応用問題 図をかいて 1 順に求める ② 方程式を作る ②の方針で解く。図において分割される各部分集合の要素の個数をかき込んでいく。 そして、 残った部分の要素の個数をα, bとおいて考える。 全体集合をひとし, A市, B市, C 市に行ったことのある人全体の集合 を,それぞれA, B, C とする。 右の図のように, 要素の個数 α, bを 定めると50 a+(x-3)+3+6=50 b+(x-3)+3+7=13 これらの式を整理すると a+x=44 a+b+x=45 1, 3 ・U (100) a+b+14+(x-3) +7 +6 +3 +28=100 b+x=6 28 b B(13) x-3 ( NUAR BUA DURUM) -A (50) a 3 7 2, ①から a=44-x ②から b=6-x これらを③に代入して整理すると-x+50=45 よって x=5 6 14 C(30) n(ANBNC) #5 個数をかき込んでいく。 n(A)=50 ←n (B) =13 n(U)=100 Smanj な 0. C PRACTICE 10 3 ある高校の生徒140人を対象に, 国語、数学、英語の3教科のそれぞれについて、得 意か否かを調査した。 その結果, 国語が得意な人は86人、数学が得意な人は40人 た。そして,国語と数学がともに得意な人は18人, 国語と英語がともに得意な人は 15 人,国語または英語が得意な人は 101 人, 数学または英語が得意な人は5人い また,どの教科についても得意でない人は20人いた。このとき、3教科のすべてが 意な人は 人であり、3教科中1教科のみ得意な人は人である。[名城

回答募集中 回答数: 0