学年

質問の種類

数学 高校生

[3]θ=0のときPはAに一致 とありますが、QもAと一致しますか?

極方程式と軌跡 00000 基本 例題 83 点Aの極座標を (10, 0), 極0と点Aを結ぶ線分を直径とする円Cの周上の任 意の点をQとする。点Qにおける円Cの接線に極から垂線OP を下ろし、 Pの極座標を (r, 0) とするとき,その軌跡の極方程式を求めよ。 ただし, 00πとする。 [類 岡山理科大 基本 81 指針点P(r, 0) について,r,の関係式を導くために,円Cの中心Cから直線 OP に垂線 CHを下ろし、 OP と HP, OH の関係に注目する。 まず, 00 0<<> π 2'2 <<πで場合分けをして, 0 の関係式を求め,次に, 0=0, の各場合について吟味する。 CHART 軌跡 軌跡上の動点 (r, 0)の関係式を導く 解答 Cの中心をCとし, Cから直線OP に垂線 CH を下ろすと OP=r, HP=5 [1]08のとき [1] P Q 10=7を境目として,Hが 線分 OP 上にあるときと 線分 OP の延長上にある ときに分かれる。 OP=HP+OH OH=5cos0 であるから r=5+5cos [2]のとき [2] OP=HP-OH ここで OH=5cos (π-0)=-5cos0 よって r=5+5cose [3] 6=0 のとき, PはAに一致し、 OP=5+5cos0 を満たす。(*) [4] 6=1のとき,OP=5で, H+ 0 -5-C -5 A X <直角三角形 COH に注目。 C P 1-5- C A H-O C π OP=5+5cos を満たす。(*) 以上から、求める軌跡の極方程式は r=5+5cos0 練習 <直角三角形 COH に注目 (*) [1], [2]で導かれた r=5+5cose が 8 = 0, のときも成り立つかど をチェックする。 [参考] r=5(1+cos e) で れる曲線をカージオイ いう (p.151 も参照)。 点Cを中心とする半径 αの円 C の定直径をOA とする。 点Pは円C上の動 © 83点Pにおける接線に0から垂線OQを引き, OQの延長上に点 R をとって QR=α とする。 Oを極, 始線をOAとする極座標上において, 点Rの極座 (10)(ただし,0≦) とするとき (1)点Rの軌跡の極方程式を求めよ。 (2)直線 OR の点R における垂線 RQ' は, 点C を中心とする定円に接する を示せ。 Op.152E

未解決 回答数: 1
数学 高校生

ルーズリーフのやり方でやったんですけど、そっからどうすればわからなくて、解答と何が違うのかも含めて答えてくれると嬉しいです!

26 漸化式と極限(3) ・・・ 分数形 ... 数列{an} が α1=3, An+1= 3an-4 an-1 によって定められるとき [類 東京女子大] (1) bn = 1 An-2 とおくとき, bn+1, bn の関係式を求めよ。 (2) 数列{an} の一般項を求めよ。 (3) liman を求めよ。 n→∞ p.36 まとめ, 基本 26 指針 針 (1) おき換えの式bm= 1 an-2 ①の an-2に注目。 漸化式から bn+1 (= 1 an+1-2 の形を作り出すために, 漸化式の両辺から2を引いてみる。 なお,①のおき換えが与えられているから, an≠2としてよい。 (2) まず (1) の結果から一般項bnをnで表す。 (1) 漸化式から an+1-2= 3an-4 解答 -2 an-1 検討 ゆえに an-2 an+1-2= an-1 両辺の逆数をとって 1 an-1 An+1-2 An-2 an+1= SE 分数形の漸化式について 一般項を求める方法は, p.36 の ⑥参照。 rants panta そのとき,特 1 1 よって = +1 an+1-2 an-2 性方程式 x= rxts の解 px+q したがって bn+1=6n+1 がx=α (重解)ならば, (2) (1)より, 数列 {bn} は初項b1=1, 公差1の等差数列で bm= あるから b=1+(n-1)・1=n 1 (または an-a bn=an-a) とおくと, よってie an- (3) liman=lim n→∞ n- 1 1 +2=-+2 = 1 bn +2=2 -2)= n $8 般項 αn が求められる。 CTUL 1 |bn= an-2 から -milan- -2= 1 bn

回答募集中 回答数: 0
数学 高校生

青マーカーで引いてあるkとk+1の関係式がわかってないといけないのは何故でしょうか?k+2とkの関係を証明するだけではいけないのですか?教えて頂きたいです。

・cos on 倍角公式 : チェビシェフ 20 次の問いに答えよ。 0-E (1) n を正の整数とする. どんな角に対しても cosno=2cos0cos(n-1)0-cos(n-2)0 が成り立つことをを示せ. また, ある多項式 Pn(x) を用いて cos は cosno = pn(cose) と表されることを示せ oni (2) Pn(x)はnが偶数ならば偶関数, 奇数ならば奇関数になることを 示せ. 3 tan (3)多項式 pn(x) の定数項を求めよ. また, Pn(x) の1次の項の係数 を求めよ. [九州大〕 アプローチ (1-x) (イ) cos e には 2倍角, 3倍角の公式があります: cos 20 = 2 cos2 0–1 cos 30 = 4cos30-3cos0 この これらの右辺は cose の多項式になっているので,一般に 「cosno は cost の多項式になる」と予想されます。 これを示すのが本間 (1) です. n=4のと きは cos 40 = cos 2(20) = 2 cos² 20 -1 立 =2(2cos20-1)2-1 かっていないといけませんが, cos(k + 1)0 = coskocososin k0 sin O となり, sin0 がでてきてしまい、うまくありません. そこで誘導がついて n=k, いて, cos n は cos(n-1)0 と と cos(n-2) と cose でかけるので,n n=k+1のときを仮定するとn=k+2が示せることがみえてきます。す なわち となり、Pa(x) から Pa(x)の存在がわかります。 これらから Pa(x)の存在を 示すのに帰納法が使えないかと考えみます。そのためには「n=kのときと n=k+1のときの関係」すなわち「cosk と cos(k + 1)6 の関係式」がわ + + S となり合う関係 が分かってないと いけない

未解決 回答数: 0
数学 高校生

点PとQが一致するってどういうことですか? 直線に対して対称っていうことは線対称ですよね 同じ場所にある点は線対称って言えるんですか? 旧課程のチャートでは[2]は解答に書いてなかったんですけどなんで新課程ではこれが書いてあるんですか?

基本 例題 100 直線に関する対称移動 00000 直線x+y=1 に関して点Qと対称な点をPとする。 点Qが直線 □上を動く。 x-2y+8=0 上を動くとき,点Pは直線 [ ③ 基本 78,98 CHART & SOLUTION 線対称 直線 l に関して P と Qが対称 [[1] 直線 PQ がℓに垂直 e [2] 線分 PQ の中点が上にある Q 点Qが直線 x-2y+8=0 上を動くときの, 直線 l : x+y=1 に関して点Qと対称な点 Pの軌跡, と考える。 つまり, Q(s, t) に連動する点P (x,y) の軌跡 3 ① s, txyで表す。 ② x, yだけの関係式を導く。 13 解答 直線x-2y+8=0 ① ② 上を動く点をQ(s, t)とし, 直線 x+y=1 inf 線対称な直線を求め (1) るには EXERCISES ...... 2 121 4 に関して点Qと対称な点を P(x, y) とする。 |1 71 (p.137) のような方法も Q(s,t) あるが, 左の解答で用いた 軌跡の考え方は,直線以外 の図形に対しても通用する。 軌跡と方程式 [1] 点PとQが一致しない とき, 直線 PQ が直線② -8 01 iP(x,y) に垂直であるから t-y.(-1)=-1 (3) 垂直⇔傾きの積が1 8-X 線分 PQ の中点が直線②上にあるから xts+y+t=1 ④ 2 ③から s-t=x-y 線分PQの中点の座標は c+s ④から s+t=2-(x+y) s, tについて解くと s=1-y, t=1-x また,点Qは直線 ①上の点であるから s-2t+8=0 ⑤⑥に代入して すなわち 2x-y+7=0 (1-y)-2(1-x)+8=0 [2]点PとQが一致するとき、点Pは直線 ①と②の交点 上の2式の辺々を加え ると 2s=2-2y[s] 辺々を引くと -2t=2x-2 ← s, tを消去する。 ⑤ (6) ⑦ であるから x=-2,y=3 これは ⑦を満たす。 以上から、求める直線の方程式は 2x-y+7=0 方程式 ①と②を連立 させて解く。

未解決 回答数: 1
数学 高校生

解答の場合分けがこのようになっている理由がわからないです。なぜ1で分けているのか教えて頂きたいです。

回転 36 xy 平面上の2次曲線を 9x2+2√3xy+7y2 = 60 とする.このとき,次の各問いに答えよ. 215-36 と曲線 C は、原点の周りに角度0(001)だけ回転すると, ax2+by2 = 1 の形になる.0 と定数a, b の値を求めよ. (2) 曲線C上の点と点 (c, -√3c) との距離の最小値が2であると き,c の値を求めよ.ただし, c0 とする. アプローチ 〔神戸大〕 (イ)曲線を回転させようと考えるのではありません。曲線上の点を回転さ せて回転後の点の軌跡を求める感覚です. そこで曲線 C上の点を (x, y), これを回転した点を (X, Y) とし,x,yの関係式から x, y を消去して, X, Y の満たすべき関係式を求めると考えます.つまり x, y を X, Y で表 してC の式に代入するというストーリーです。そのためには (X, Y) = 「(x, y) を 0 回転した点」 という関係式ではなく (x, y) = 「(X, Y) を -0 回転した点」 という関係式を立式しましょう。これをC の式に代入したら出来上がり です. (口)点(x, y) を原点を中心に角 0 だけ回転した点を (X, Y) とすると, X + Yi = (cos 0 +isin0)(x + yi) です.実部と虚部を比較すると となります. X = x cos 0 - y sin 0, Y = xsin0 + y cos 0 (2)では曲線 C 上の点と (c, -√3c)との距離を考えるのではなく,とも に回転させた曲線と点との距離を考えます.

回答募集中 回答数: 0