学年

質問の種類

数学 高校生

回答が欲しいです。お願いします。。

1. (6 A) バスケットボールチーム「大阪タイガース」は、スタジアムでプレーしています。 最も高いチケットは1列目の間です。 各列のチケットの値段 円(¥) 単位で、 等差数列となっています。 1列目 から3列目までの値は次の表のとおりです。 公差のを書きなさい。 b. 16列目のチケットの費用を計算しなさい。 畑の面積を求めよ。 c. 1列目から16列目までのチケットをそれぞれ2枚ずつ購入する場合の費用を求めよ。 2.最高 ある農夫が三角形のABCを所有している。 [AB] の長さは85m [AC] の長さは110mである。この2つの辺の なす角は55である。 b. Aから [BC] 上の点Dまで直線状 BD を求めよ、 仮定がある場合はその説明を十分にせよ。 線分 AEの傾きを計算しなさい。 3.最高点 AA(3, 1), B3, 5), C(11, 7), D(9, 1), E(7,3) 12797 バーン国有林のスノーシェルターである。これらのス ノーシェルターは、 されている。 水平方向の縮尺:1 単位は1km を表す。 の尺単位は1kmを表す 12. 10. 8 6 4・ 2. 0- .B 4. A jsである。 パークレンジャーは3本の線を引き、不完全なボロノイ図をした。 YA Ticket pricing per game 6800 Yen 6550 Yen 6300 Yen Sector 1 の値を書け。 1st row 2nd row 3rd row U c. F(X) を求めよ。 E D 5.最高9点 下図はボロノイ図の一部です。 B [2] 12- の方程式はy=2x+9 である。 点Aの座標を求めよ。 10- 8- c. 設問に即して、母点Eを含むボロノイの意味を説明しなさい。 6- 14 2 0 等分したいと思っている。 $ 10 12 14 16 3 A 19の9つのおうぎ形(Sector) に分かれている。 おうぎ形の中心角は等差数列をなし、 最も大きな角となる。 Diagram not to scale 4 6 Diagram not to scale 母E (サイトE) を含むポロノイ (セル) を完成させる直線の方程式をax+by+d=0 の形で答えよ。 ただし、 a.b.dez. (3) E $ D 10 C 12 14 16 (2) [3] [3] [6] buy を求めよ。 ディスクの中心にある矢印を回転させ、 矢印が止まったおうぎ形を記録するゲームをする。 矢印が1番 (Sector Ⅱ)に 止まれば 10点獲得。 止まらなければ2点損失である。 獲得した点数をXとする。 3 [1] [1] [9] [4] 母であり、Bの座標は (4.6)である。 1は境界 (ボロノイ)であり、AからBへの線分の垂直二等分線 [2]

回答募集中 回答数: 0
数学 中学生

数検3級の採点についてです。□8で私は点をつけずに①②などのみをつけて回答したのですが、それでも丸にできますか?(問題文には印をつける等の記載がなかったため困っています) 解答の点A,B位はアルファベットをつけなくても点はつけた方が良かったかな…というところも迷っています... 続きを読む

解説 |7]解答 p.23 0 円周上に2点A, Bをとり,点A., B (18) (16) 5V2 cm (177 4/6 cm (計算の途中の式は解説参照) 解説 (16) △AHBはZAHB=90°, AH=BH の直角 二等辺三角形であるから,三平方の定理よ を中心として等しい半径の円をかき。 その交点をC, Dとする。 2 直線CDを引くと,これが求める直 線しである。 円周上の2点を結ぶ線分の垂直二等分線 は,円の中心を通り、円の面積を2等分す り、 AB= AH°+ BH° AB?=5°+5°=50 AB>0より, AB=v50=5V2 AB=5V2(cm) る。 |9|解答 p.25 (19) 0 20 A 4 B9 C5 三平方の定理 解説 19) 十の位の列で, Bは0ではなく、また1 けたの数なので10でもないが、一の位から 土の位にくり上げられた数があり、その1 をたして10になる9と考えられる。 20 19より,B=9とすると 直角三角形の辺の長 さについて,次の公式 が成り立つ。 a'+= (17) △OHAは, ZOHA=90° の直角三角形 であるから、三平方の定理より、 OH°= OA?- AH =11°-5° A9C +AC9 9CA 百の位の列に着目すると,くり上がった 1と2つのAをたして9になるので、 = 96 OH>0より, OH=V96 = 4/6(cm) 1+2A=9 2A=8 A=4 8解答 よって、一の位は p.24 C+9=14 (18) 2,e C=5 495 +459 B 954 A 10

回答募集中 回答数: 0
数学 高校生

解説の下線の直前の赤色の式が何故このような領域を取るのかがわかりません。

0, ②とも左辺, 右辺は0以上であるから, それぞれ 両辺を平方 した式と同値である。 重要 例題28 不等式を満たす点の存在範囲 (2) 複素数えが1z-1|slz-4|<2|z-1|を満たすとき, 点zが動く範囲をま 面上に図示せよ。 56 基本22 lz-1|<|z-4| 112-452|z-1| の である。 の 指針> |z-1|<|z-4|<2|z-1| → 平方した不等式を整理する方針で進める。 また,別解のように, z=x+yi (x, yは実数)として, x, yの不等式の表す領域として 考えてもよい。 数学IIで学んだ知識で解決できる。 解答 (a20, b20のとき asb→a<6° |z-1|s|z-4|S2|z-1|から |z-1fs|z-4<2"|z-1f (z-1)(-1)S(z-4)(z-4) のz-1fs|2-4Pから - 5 2 る+z 整理すると z+zS5 ata 2 はzの実部。 ゆえに 2 これは点 5 を通り,実軸に垂直な直線とその左側の部分を表 検討 については, P(z), A(1), B(4)とすると AP<BP |z-1|<|z-4 す。 のまた, |z-4P<4|z-1°から (z-4)(z-4)<4(z-1)(ミ-1)|よって, 点Pは2点A,Bを 整理すると 22w4 すなわち |2ド>2° 結ぶ線分の垂直二等分線およ びその左側の部分にある。 したがって |2|22 これは原点を中心とする半径2の円とそ の外部の領域を表す。 以上から,点zの動く範囲は 右図の斜 線部分 のようになる。 ただし,境界線を含む。 別解 z=x+yi (x, yは実数)とすると、 |2-1fslz-4fs21|z-1fから (x-1}+y°s(x-4}+y's4(x-1)'+y°} (x-1)°+y°s(x-4)+y?から x 0 P(z) の 0| A(1) B(4) X z-1=x-1+yi, 2-4=x-4+yi (x-4)+ys4(x-1)°+v?\ か 5 xS 2 よって 占 5_2 5_2 C

回答募集中 回答数: 0