学年

質問の種類

数学 高校生

区分求積法についての問題です 1枚目はnのくくり出し方が分からなくて(赤線部の部分) 2枚目は②自体がよく分かりません 解説お願いします

282 0 n x/< 2 基本例題 164 定積分と和の極限 次の極限値を求めよ。 n/n+k n4 Ase 指針 hから (1) lim E n→∞k=1 ♡に h= 3 とばす 解答 みにする。 lim ① 与えられた和S, において, とき、②Tの第k項がf- S=Tの形に変形する。 n こ dx または lim 3-S 1が0になっただけー。 のように, 和の極限を定積分で表す。 その手順は次の通り。 YA を見つける。 ③ 定積分の形で表す。 それには (2) S=lim いて、口をめっちゃ よって S=lim Sw (2) lim Σ n→∞k=1 n-∞0 k=1 n (またはSof() f(x), 1/27 n k=1 と対応させる。 n 求める極限値をSとする。 (1) (n+k)³=(n+k) ³ - 1 (n+k)³ = 1 (1+2) ³ = n 1からn= 練習 次の極限値を求めよ。 ② 164 れに limimを (1) lim 2 Asin kr 2 n→∞k=n 100 n (n) の形になるような関数 f(x) をくくり出し, - ( 16 547) = √ ( 1 + x) ³ dx = [ 2 (1 + x)³] = ³² n (下にしていく。 1(k+n) (k+2n) 18 √ ( 12 ) = S(x) dx n 3 「だから 1 n-co₂_n k=1 ²² 20 ( 1 ² + 1) ( ^² + 2) ●)ここで、(x+1)(x+2) x+1 + n 1 a ると a=-1,b=1,c=1 14 / 0) 207 S=Sl= x + 1 + (x + 1)² + x + 2]dx 1 1 x+1 (x+1)x+2 面積 部 れを足していく n k 2 (n + k) ¹ = lim ¹ 2 (1+2) ³ n→∞nk=1 1 (1²--20g(x+1) +++ log(x+2) x+1 3 =1/12/+ +log- →dx n? 33/2 3 2 4 1 = = S₁ (x + 1) ² ( x + 2) dx b + (x+1)² x+2 0000 [(1) 琉球大, (2) 岐阜大】 EST p.hou 基本事項 重要 166\ とす y=f(x) M f(x) 0 12. k-1 kd-11* n n n n n <f(x)== n 参考 積分区間は, lim Z〇の形なら、すべて n→∞k=1 0≦x≦1で考えられる。 ◄f(x)=(1+x) ³ kn dx (x+1)(x+2) 右辺の分数式は,左のよ うにして、部分分数に分 解する。分母を払った 1=a(x+1)(x+2) ・+nen +6(x+2)+c(x+1)^ の両辺の係数が等しいと して得られる連立方程式 を解く。 もしくは、 x=-1,-2,0など適当 な値を代入してもよい。 1 (2) lim/m/s (eir+2ch+3ei++nek) nn [(2) 岩手大] p.289 EX139

解決済み 回答数: 2
数学 高校生

249. 答えまでの道筋で0≦x≦1においてg(x)≧0のように 絶対値を考慮してこのような記述をしていますが、 0<x<1ではなく0≦x≦1である理由があまりピンと来ません。 t≦0とおいたときx=0のときg(x)=0となるから という理由以外に0≦x≦1である理由は何か... 続きを読む

の分 5 |。 分割して 重要 例題 249 変数t を含む定積分の最大・最小 00000 f(t)=fx-txdx とする。 f(t) の最小値と最小値を与えるtの値を求めよ。 [ 類 名古屋大 ] 基本 248 12 指針 グラフをかいて, 定積分がどの部分の面 積を表すかを考えてみよう。 g(x)=x2-tx とすると,g(x)=0の解は x=0tであるから, y=lg(x) | のグラフは 右図のようになり, f(t) は図の赤い部分の 面積を表す。 積分区間は 0≦x≦1で固定 されているため、変化する x=tの位置が 0≦x≦1の左外, 内部, 右外のいずれかで場合分けをする。 (日 解答 g(x)=x2-txc とする。 g(x)=0の解はx=0, t [①] [1] t≦0 のとき 0≦x≦1では g(x)≧0 よって f(t)=g(x)dx=f'(x-x)dx 分は、 それぞ った部分の面 [2] 0<t <1のとき 0≤x≤t l g(x) ≤0, よって f(t)=_Sg(x)dx+f,g(x)dx = - [ x ³² - ²/² x ²] + [ ³² - ²/2 x²] = 3 2 F (1) = 1² - 1/2 = (1 + √2²) (1 -√2) のようになる。 したがって, f(t) は t 2 t= をとる。 1 t 2 f'(t)=0 とすると t=± 0<t < 1 における増減表は右のようになる。 0≦x≦1では g(x) ≧0 2 のとき最小値 t≦x≦1では g(x)≧0 √√√2 2 [3] のとき t よって (1) Sip(x)dx=(1/-/-/-/1/3 2 以上から, y=f(t) のグラフは,右の図 33 I 2-√2 6 t 2 y4 2-√2 6 t 2 O 1- (1 3 t≤0 + 6 1-3 10 1x √√21 2 t f' (t) f(t) 0 t [1] 0 y=g(x) | [2] - [3] 0 0 Y_y=lg(x)/ ◄ - ( ² 1/2 + ²)2 + (1 - 2/2 ) 1 t>0 0 √2 2 0 t1 1 x 2-√2 6 x + 7 YA y=g(x) | 17. 1 t 1 7章 41 面 積

未解決 回答数: 1