学年

質問の種類

化学 大学生・専門学校生・社会人

この表を使って グラフ2つ書かなきゃいけないんですが 縦軸に1つ目がプロピオン酸メチルの濃度の対数 2つ目が濃度の逆数 と指定されていて 濃度の対数の求め方と逆数の求め方が分かりません。 どうやって数値を出したらいいんでしょうかお願いします🙇‍♀️

2. 異なる2つの条件で、次のプロピオン酸メチル C2H5COOCH の加水分解反応を行い、 生成物であるプロ ピオン酸 C2H5COOH の濃度を測定したところ、 表1の結果が得られた。 C2H5COOCH3 + H2O C2H5COOH + CH3OH 表 1 プロピオン酸メチルの加水分解反応で生成したプロピオン酸の濃度 / mmol/L Time / min 0 5 10 15 20 30 40 50 75 Exp. 1 0 [19.7 31.6 38.8 43.2 47.5 49.1 49.7 150 Exp. 2 39.5 44.1 45.9 46.9 47.9 48.4 48.7 49.1 2-1. 反応式から予想される反応速度は、どのような式で書き表されるか反応速度定数 k と各成分の濃度を用い て示せ。また、反応次数はいくらか?(何次反応か?) u= ひ= R[C2H5COOH][H2O] 2次反応 2-2. Exp.1 と Exp. 2 で、 原料であるプロピオン酸メチル C2H5COOCH3 の初期濃度は、ともに 50mmol/Lで あった。各時間におけるプロピオン酸メチルの濃度は、いくらになるか。 表2 反応で残っているプロピオン酸メチルの濃度/mmol/L Time / mini 0 5 10 15 20 30 40 40 Exp. 1 50 Exp. 2 50 18.4 30:31 591 411 6.8 2.5 3.1 2. 50 75

回答募集中 回答数: 0
数学 高校生

数三微分法の問題なのですが次数がnの場合にゼロになるように解説では考えているのですが次数n-1がゼロになる場合は考えなくて良いのですか?教えて頂きたいです。

分け EXxの整式 f(x)がxf(x)+(1-x)f'(x)+3f(x) = 0(0)=1を満たすとき、f(x)を求めよ。 ③ 132 f(x) の次数をn (nは0以上の整数) とする。 [類 神戸大] HINT f(x) の最高次の n = 0 すなわち f(x) が定数のとき, f (0) =1から このとき f'(x) = 0 f'(x)=0 f(x)=1 項に着目して、まず f(x) の次数を求める。 条件式に代入すると, 3f(x)=0となり これはf(x)=1に反するから,不適。 f(x) = 0 n≧1のとき,f(x) の最高次の項を ax (α≠0) とする。 xf'(x)+(1-x)f'(x)+3f(x)=0の左辺を変形して {3f(x)-xf(x)}+{f(x)+xf" (x)}=0 f(x) xf'(x) の最高次の次数はnであり, 3f(x)-xf'(x) ←3f(x)-xf'(x) の次数 のn次の項について 3ax"x.naxn-1=(3-n)ax" 条件から (3-n)ax=0 α≠0 であるからn=3 土て相殺されて しまう可能性はない?? したがって, f(x) の次数は3であることが必要条件である。 このとき,f(0)=1から,f(x)=ax+bx2+cx+1 (α≠0) とお けて f'(x) =3ax2+2bx+c, f'(x)=6ax+26 はn以下,f'(x)+xf(x) の次数は (n-1) 以下。 xf"(x)+(1-x)f'(x)+3f(x)=0に代入して x(6ax+26)+(1-x) (3ax2+2bx+c) +3(ax3+bx2+cx+1)=0 整理して笑(a+b)x2+(46+2c)x+c+3=0 08 ←Ax2+Bx+C=0がx よって 9a+b=0,46+2c=0, c+3=0) の恒等式 = (n) ⇔A=B=C=0

回答募集中 回答数: 0
数学 高校生

詳しく解説してください

重要 21 等式を満たす多項式の決定 00000 多項式f(x) はすべての実数xについてf(x+1)-f(x) =2x を満たし,f(0)=1 であるという。 このとき, f(x) を求めよ。 (一橋大 基本15 指針 例えば,f(x)が2次式とわかっていれば,f(x)=ax2+bx+cとおいて進めることが 進める。f(x+1)-f(x) の最高次の項はどうなるかを調べ, 右辺 2x と比較するこ →f(x)はn次式であるとして, f(x)=ax+bx-1+...... (a≠0, n≧1) とおいて できるが,この問題ではf(x) が何次式か不明である。 とで次数nと係数αを求める。 なお,f(x) = (定数) の場合は別に考えておく。 f(x)=1 | この場合は,(*)に含 f(x) =c(cは定数) とすると, f(0)=1から 解答 これはf(x+1)-f(x) =2x を満たさないから,不適。 よって,f(x)=ax+bx"-1+...... (a≠0, n≧1)(*) とす 0=1+v-xl ると f(x+1)-f(x) 1+x=4 =a(x+1)"+6(x+1)"-'+…………-(ax"+bxn-1+…………) =anx-1+g(x) ただし,g(x)は多項式で,次数は n-1より小さい f(x+1)-f(x)=2xはxについての恒等式であるから、最 高次の項を比較して ①から れないため、別に考えて いる。 (x+1)^ =x+nCixcm-1+nCzx-2. のうち, a(x+1)+1-ax" 次の項は anx-1で りの頃は2次以 n-l=1 ・①, an=2. ②なる。 ....... xの次 係数を比較。 n=2 ゆえに、②から a=1 このとき,f(x)=x2+bx+c と表される。 f(0)=1から c=1 またf(x+1)-f(x)=(x+1)2+6(x+1)+c-(x2+bx+c) c=1としてもよ よって =2x+b+1 2.x+b+1=2x この等式はxについての恒等式であるから 結果は同じ b+1=0 係数比較法。 すなわち b=-1 木ゴル したがって f(x)=x-x+1

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

1番、3番の前半、4、5が分かりません。 自分で調べながらやっているつもりなのですが、式の関係性などが全然掴めず、解けません。過程と共に教えて欲しいです。

確認問題 #01 ドブロイ波長 1.ド・ブロイ波長は、運動量p=mv の物質が持つ波 (物質波) の波長であり、 入=h/p=h/mv と表される。ここで、 hはプランク定数、mは質量、 v は速度である。従って、運動エネル ギーEの粒子についてのド・ブロイ波長はと表される。 電子について、波長入を À 単位、 運動エネルギーをV単位で表すとき、 [Å] 150.4 == と書けることを示しなさい。 プランク [E[ev] 定数は6.626×10-34 [Js]、 電子の質量は9.109 ×10-31 [kg] 1 [eV] = 1.602 × 10-19 [J]、1[Å] = 1 × 10-10 [m] とする。 2. 運動エネルギーが50eV の電子のド・ブロイ波長を求めなさい。 3. 光の粒子性を表す光量子仮説での式により、光子エネルギーE=hv と光の波長 入の関係式 がE [eV] = 1240/2 [nm] と書けることを示しなさい。 また、波長が400nmの光について 光子エネルギーをV単位で求めなさい。 4. Ni 単結晶表面での最近接原子間距離は 0.249mm である。 電子のエネルギーが100eV の とき、n (回折の次数) がいくつまでの回折スポットが出現するか述べなさい。 また、 それ ぞれの回折角度を求めなさい。 同様に、電子のエネルギーが150eVのとき、 nがいくつま での回折スポットが出現するかと、それぞれの回折角度を求めなさい。 be 101 be 入 02 d d sine₁ =λ d sin0222 5. 運動エネルギーが100eV の電子をある金属の結晶表面に対して垂直に照射したとき、 表 面の法線方向から 25.2° と 58.3° の方向に回折スポットが観測された。 これらが、 1次お よび2次の回折スポットに対応する場合、この金属の原子間距離を A単位で求めなさい。

回答募集中 回答数: 0