学年

質問の種類

数学 高校生

なぜπ/6が√3/3になるのかが分かりません 赤で囲った部分のことです

D M ★★☆☆ 例題 153 2直線のなす角 2直線 3xy0 ... ① 2x+y-4=0 ② について (1) 2直線のなす角0 (0≧≦o)を求めよ。 (2) 直線 ①との角をなし、原点を通る直線の方程式を求めよ。 ReAction 2直線のなす角は, tan0 = (傾き) を利用せよ IA 例題132 思考プロセス (1) 直線 ①とx軸の正の向きのなす角を 0, 直線②とx軸の正の向きのなす角を02 001, 02 の関係は 0 tand, tan02 (2) 図をかく 条件 を満たす直線は, 右の図のように2本ある。 Action» 2直線のなす角0は, tan の加法定理を利用せよ 解 (1) ① ② がx軸の正の向きとなす角をそれぞれ 01, 02 と tanQ=3, tand2=2 すると 002-01 であるから tane = tan(02-01) tang – tan. 1+tan O2tan01 -2-3 = 1 1+(-2)・3 直線 y=mx+kがx軸 の正の向きとなす角を 0(0≦0π)とすると m=tan0 y=mx+k 2 yea 4001200 102 01 ( 01 _02 交点を通るx軸に平行な 直線を引き, 同位角を考 0 2x える。 30 π より 0 = π 4 (2) 求める直線がx軸の正の向きと y π なす角は 01 土 である。 6 6+5√3 tan (+) 3 tan (6-6)=-6+5√3 3 よって、 求める直線は,原点を通るから tan(+)- 3- tan(0,-)- 6+5√3 y = -6+5√3 3+ 3 = 1-3. www/www/www/w 3 √3 3 3 1+3・ 3 3 -x, y= X 3 原点を通るから、切片 は0である。 123 (1) 練習 1532 直線 x-2y=0 ... ①, x+3y-6=0 ② について ... (1) 2直線のなす角00≧6 0≧≦1) を求めよ。と π 2 (2)直線 ①との角をなし,原点を通る直線の方程式を求めよ。 p.310 問題

未解決 回答数: 1
数学 高校生

サシスセがわかりません (5.5)が最大になるのですがなぜですか?どういうことですか?

原料 A, B, C を使って製品 P, Q を作る企画が立ち上がったので、次の (a)~(d)の条件のもとで、 得られる利益のシミュレーションをしたい Pを1台作るのに, A, B, C をそれぞれ3kg, 1kg, 1kg 使う。 (b)Qを1台作るのに, A, B, C をそれぞれ1kg, 2kg 1kg 使う。 (e) A, B, Cは1日につき, それぞれ 20kg 16kg 10kgまで使用できる。 (d) P, Qの1台あたりの利益は, それぞれ5万円, 4万円とする。 いま, P,Qを1日あたり,それぞれx台, y台作る。 ただし, x, yは0以上の整数とする。この とき、条件(a)~(c)を不等式で表すと ア x+ys イウ x+1 I y オカ lxty≧キク が成り立つ。このとき, 1日の総利益を万円とする。 (1)k=ケ x+ ay で, kの最大値はサシ 万円である。 これは,Pをス 台,Qをセ 台作るときである。 (2) 新しい戦略を探るために, Pの1台あたりの利益を4万円 (a>0) として考える。 (i)(1)と同じくPをス台, Qをセ台作ることで,kが最大になるようなαの値の範囲 は ソ Sas タチ である。 (ii) a>+ となったときは,Pを ツ ]台,Qをテ台作ることに変更すれば,k を最大 にでき,最大値はト α+ナ (万円) になる。 また、この変更により, (i)のPを ス ]台, Qをセ台で作り続けた場合に比べ, 1日の総 利益がαニヌ (万円) 増えることがわかる。 0 (20)

未解決 回答数: 1
数学 高校生

この問題で、どうしてk=2、a=2と出たのに実数解を持たないことがあるのですか? 注意を読んでもよくわからないので教えてください! それと、[2]で、k=-6と出たのに、kを代入して確かめるのですか? a=2になったのだからx=2が確定したわけではないのですか?

重要 例 102 2次方程式の共通解 171 ①のののの 2つの2次方程式 2x2+kx+4=0, x+x+k=0がただ1つの共通の実数解をも つように定数kの値を定め、その共通解を求めよ。 指針 基本97 2つの方程式に 共通な解の問題であるから,一方の方程式の解を求めることができ たら、その解を他方に代入することによって、定数の値を求めることができる。 しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では、次の解法 が一般的である。 2つの方程式の共通解を x=αとおいて、それぞれの方程式に代入すると 2a+ko+4=0 ①, a²+a+k=0 これをα, hについての連立方程式とみて解く。 ② ② から導かれる k=-α-a を ①に代入 (kを消去) してもよいが, 3次方程式と なって数学の範囲では解けない。 この問題では、最高次の項であるの項を消去す ることを考える。 なお, 共通の 「実数解」 という問題の条件に注意。 CHART 方程式の共通解 共通解を x=u とおく 共通解を x=α とおいて, 方程式にそれぞれ代入すると ①, a²+a+k=0.... ② 解答 2ω^+ka+4=0 ①-② ×2 から (k-2)a+4-2k=0 ゆえに (k-2)(a-2)=0 よって k=2 または α=2 [1] k=2のとき 3章 11 1 2次方程式 αの項を消去。 この考 え方は, 連立1次方程式 を加減法で解くことに似 ている。 の判別式をDとすると D=12-4・1・2=-7 D0 であるから,この方程式は実数解をもたない。 ゆえに、2つの方程式は共通の実数解をもたない。 2つの方程式はともに x2+x+2=0となり,この方程式 数学の範囲では, x'+x+2=0の解を求め ることはできない。 [2] α=2のとき ②から 22+2+k=0 よって k=-6 このとき2つの方程式は2x2-6x+4=0, x2+x-6=0 すなわち 2(x-1)(x-2)=0, (x-2)(x+3)=0 とな り,解はそれぞれ x=1,2; x=2, -3 < α=2を①に代入しても よい。 よって、2つの方程式はただ1つの共通の実数解 x=2 をもつ。 以上から k=-6, 共通解はx=2 注意 上の解答では, 共通解 x=α をもつと仮定してαやkの値を求めているから, 求めた値に対して, 実際に共通解をもつか, または問題の条件を満たすかど うかを確認しなければならない。 (at)

未解決 回答数: 1