学年

質問の種類

数学 高校生

対数についての質問です。⑵においてm,nを正の整数と限定しているのは何故ですか?正の整数でなければ、左辺は偶数右辺は奇数にならないのですか?よろしくお願いします。

Think 914 例題171 無理数となる対数 2 対数と対数関数 339 **** log23の値を 2'=8, 3'=9,3243,2256 を利用して, 小数第 1位まで求めよ. () 10g103 が無理数であることを証明せよ. 103 の値を求めるので,対数をとるときは 底を2にするとよい . 考え方 (1) 与えられた条件を使って不等式を作る. (津田塾大改) <対数の定義> logaM=r⇔ α'=M (2)背理法を使って証明する. 有理数、無理数の定義は忘れないようにしよう。 (1)39 より 底2で両辺の対数をとると, log232=log29 を 解答 2 したがって 210g23=10g29より, 10g23= 2 したがって, 510g23=10g2243 より また,3243 より,底2で両辺の対数をとると, log235=log2243 log29 log28 log223 3log22 22 -=1.5 98 より, log23= log2243 log2256_810g22 5 5 -=1.6 5 以上より, log29>10g28 (底) >1であるから 対数を消せるように 2Dを利用する. 243 256 より, log2243<log256 1.5<logz3 <1.6 も同様 よって, 10g23の小数第1位までの値は, 1.5 m (2)10g 103 が有理数であると仮定すると, 10g103>0 だか ら,互いに素な正の整数m, n を用いて, 1.5 1.6 log23=1.5... 10が1より大き log 103= m n く、真数3が1より m とおける. 対数の定義より, 10 = 3 大きいので, log103 0 両辺を乗すると, 10m=3" ここでmnは正の整数だから, 左辺10" は偶数, 右 10 は2と53" は 辺3" は奇数となり 3しか素因数をもた の よって, 10g103 は無理数である. ない (偶数 奇数 Focus 無理数の証明 有理数と仮定して背理法 m 有理数は (m, n は互いに素) とおく n 第 5 章 練習 171 (2) 10g37 は有理数でないことを証明せよ。 (1)10g102 の値を2°512,21024 を利用して, 小数第1位まで求めよ。 (慶應義塾大) →p.34817 *** また

解決済み 回答数: 1
数学 高校生

複素数の問題です。 POINT CHECKとPRACTICEの大門1について、 どちらも同じ「複素数の範囲で因数分解をしなさい」と言われていて、前者の答えは()の中の分数を無くすようにしているのに対して、後者は()に分数があるまま答えを出しています。 何が違うのでしょう... 続きを読む

第2章 複素数と方程式 1 複素数と2次方程式 23 解と係数の関係 (2) 数Ⅱ [学習日 P64 POINT CHECK ①の類題 実数の範囲で因数分解する。 2次方程式 4.12x+7=0を解くと, ・特に指定がない場合は, 有理数の範囲で因数分解する。 つまり、 2次式はつねに1次式の積に因数分解できる。 (ただし, 複素数の範囲) 学習の目標 2次方程式の解を利用して因数分解しましょう。 STUDY GUIDE 愛念の全合 2次式の因数分解 2次方程式 ax+bx+c=0の2つの解をα, B とおくと, 次の関係がある。 公式の因数分解 ax'+bx+c=a(α)(B) 計算における注意 因数分解のときに,g を忘れないこと。 α. β は,解の公式から必ず求められる。 要点をまとめましょう。 662-4.7 I= 4 68 4 3±√2 2 一複素数 実数 [ 有理数!!!!無理数 よって, 例題 次の2次式を複素数の範囲で因数分解しなさい。 x²-4x+1 解の公式から解を求める 2次方程式 4x+1=0を解くと. x=2±√2"-1=2±√3 よって, 4r+1={z(2+√3)} {ェー(2-√3)} =(x-2-√3)(x-2+√3) 実数の範囲での因数分解 POINT CHECK ◆次の2次式を複素数の範囲で因数分解しなさい。 ①の類題 4ー12c+7 x²-6x+14 2次方程式6z+14=0を解くと. =3±√32-14=3±√-5=3±√5i よって、 = 6z+14= {z(3+√5)}{ェー(3−√5) (3-5) (3+√5i) 42-12F+7=(3+/2)(x-3) 2 =(2x-3-√2) (2-3+√2 ) ②の類題 複素数の範囲で因数分解する。 2次方程式 92+6x+2=0を解くと, I= -3±√32-9.2 9 -3±√-9 複素数の範囲での因数分解 9 -3±√9i 要点の確認をしましょう 9 -1±i 品の類題 9z+6z+2 = 3 (2x-3-√2) (2x-3+√2) -64- PRACTICE 1 次の2次式を複素数の範囲で因数分解しなさい。 10 L100 (1) 3-7x+3 よって, 9x²+6x+2=9(x−−1 + 1)(x-1-1) 3 =(3+1-i)(3c+1+i) (3x+1-i)(3x+1+i) P65 PRACTICE 1 2次方程式の解を求めて, 因数分解する。 (1) 2次方程式32-7x+3=0を解くと, 7±√13 I= 6 数Ⅱ 練習問題を解いてみましょう L103 (2) 2-3x+5 3c-7s+3=3(x_7+/13)(x_7-/13) 6 6 (2) 2次方程式 2-3x+5=0を解くと, 3(x-7+√13)(x-7-√13) 6 6 3+√11 (x-3)(x-3) 2 次の式を ①有理数 ② 実数 ③複素数の各範囲で因数分解しなさい。 3±√11i 2 3+5=(x-3)(x-3) 2 2(1) -32-10=(x2+2) (2-5) ① =(x2+2)(x+√5)(x-√5) →②

解決済み 回答数: 1