学年

質問の種類

化学 高校生

化学の問題教えてください お願いします 写真の(3)、(4)、(5)の問題をそれぞれ途中式も含めて教えてください。 よろしくお願いします

〔注意〕 必要があれば,原子量は次の値を用いよ。 H, 1.00; C, 12.0; N, 14.0%; O, 16.0; Si, 28.0 次の文章を読み, (1)~(5)の問いに答えよ。 気体の質量をw[g], モル質量をM [g/mol] とすれば、その物質量はア [mol]である。気体の圧力 を P〔Pa〕,体積を V〔L〕,温度をT[K],気体定数を R [Pa・L/(K・mol)] とすると,理想気体の状態方程式 よりM=イ [g/mol] が得られる。 つまり、気体の圧力P, 体積V,温度T 質量w を測定すれば,そ の気体の分子量を求めることができる。 以上を踏まえて、常温常圧で液体である純物質Xの分子量を次の 実験から求めた。 小さい穴をあけたアルミニウム箔でふたをした内容積100mL 容器 (図1)を乾燥させ, 室温 (27℃)で質量をはかったところ 49,900gであった。 この容器に約2ml のXを入れ, 容器を図2 のように水に浸して加熱を始めた。 30分加熱すると容器内の液 体が見られなくなり、容器内はXの蒸気で満たされた。 この時 の水温は97℃, 大気圧は1.00 × 105 Paであった。 容器を取り出 して外側に付着した水を乾いた布でよく拭き取り,その容器を室 温 (27℃) まで放冷して再び質量をはかったところ 50.234gであった。 図1 ・小さい穴 -アルミニウム箔 ・内容積100mL の容器 水 図2 Xの蒸気を理想気体とみなし、 気体定数を8.31 × 103 Pa・L/(K・mol) とする。 放冷後に容器内で凝縮した Xの体積は無視できるものとする。 X の蒸気圧は27℃で 0.20×105 Pa, 97℃で2.00×105 Pa である。 (1)空欄とイに適した式を答えよ。 (2) 空気は、窒素と酸素が物質量の比4:1で混合した気体と考えられる。 空気の平均分子量を求め, 小数 第1位まで記せ。 導出過程も記せ。 (3)下線部で物質Xの質量を測定する必要がない理由を50字以内で記せ。 (4) Xの蒸気圧を考慮せずに分子量を求め, 整数値で答えよ。 (5) Xの蒸気圧を考慮して分子量を求め, 整数値で答えよ。 導出過程も記せ。

回答募集中 回答数: 0
数学 高校生

❓マークがついているところで、 2b-aとgが〜から、g=1になるところがわかりません。 教えてください。

第4問 整数の性質 【解説】 (1) P 27+31 2n+1 (2n+1)+30_ 2n+1 + 30 2n+1 Pが整数となるのは, 2n+1 が30の約数のときであるから, 2n+1 (nは正の整数) が3以上の奇数であることを考慮すると、 2n+1=3,5, 15. ②x2- 2n+2=26g - 2n+1= ag 22m²+78m+56 R= (n+m)(2n+1) nmは整数であるから,Rが整数のとき、 Q-(n+m)R このときの値は(3)より, も数である よって、 1 = (26-a)g なる。 であり,それぞれのの値に対して, Rの頃は次の表のように 1,2,4,7,22 n= 1 1 n 1 2 4 7 22 (2) 2n+1 a b を用いて、 +1 は、 最大公約数および互いに素な正の整数 とすことができる。 ②x2-(より, [2n+1=0. n+1=bg 2 b-ag= 2b-a とgはともに整数であり, g≧1 であるから, 52 60 R 80 112 276 m+1 m+2 m-+-4 m+7m+22 ... a また, n=1,2,4,7,22のそれぞれの額に対して,m=0 の ときのRの値は次の2のようになる。 2 n 1 2 47 22 R 52 30 20 16° 138 11 g= 2③ したがって,m=0 のとき,Rがとり得る異なる整数値の総和 は、 (3) 22m²+78n+56=(n+1 (22n+56 56-11=45 =(n+1){11(2n+1)+ 45 52+30 +20 +16 118 以下,60 とする. n=1のとき, m +1≧61 より より, 22m² +78n+56 Q= 2n+1 2ntlentli 互いに素だから 割りきれない. (n+1)(11(2n+1)+45} 2n+1 (+1)(1+ 45 2 2n+1 2n+1 =11(n+1)+45(n+1) ここで, (2) より 2n+1 と n+1 の最大公約数は1, すなわち, 21n+1 は互いに素であるから, Qが整数となるのは, 2n+1 が45の約数のときである。 2n+1 が3以上の奇数である ことを考慮すると, すなわち 2n+1=3,5, 9, 15, 45 n=1, 2, 4, 7, 22. よって, Qが整数となるの値は全部で5 個ある。 m+1 <l すなわち <R<1 であるから, Rは整数ではない、 n=2のとき,m+262 より 0<- m+2 であるから, Rは整数ではない. くすなわちくR<1 n4のとき、 80 m+4 が整数となるのは、+4 が 80 の約 のときである+464であることを慮すると、 m+480 すなわちm=76. 7のとき、が整数となるのは、+7 が112の約 数のときである。 767 であることを考慮すると、 m m+7=112 すなわちm=105. n=22 のとき,mmが整数となるのは、+22276(火 約数のときである、+222であることを考慮すると、 -26- -27-

解決済み 回答数: 1
数学 高校生

この解答はあっているか教えてください。よろしくお願いします🙇

・6番目の のデータ 3.28 (金) データの分析2 データを変えるとどうなるか 次の表は、あるクラスの生徒10人があるゲームをしたときの得点をまとめたも のである。 ただし, ゲームの得点は整数値をとり、表の数値はすべて四捨五入 されていない正確な値である。 中央館 生徒名 A B C D E F G HI J 平均値 27 得点 10 14 20 22 28 30 33 35 38 40 その後、得点を集計した際にデータの入力ミスがあったことが判明した。この 誤りを修正したところ、2人の生徒の得点がともに10点上がり、残りの8人の 生徒の得点は変わらなかった。 このとき、 以下の問に答えよ。 (1) 修正した後での、 10人の得点の平均値を求めよ。 (2) 修正する前と後で, 10人の得点の第1四分位数と第3四分位数の値はとも に変わらなかった。このとき,修正の前後で得点が変わった可能性がある 生徒は誰と誰か, すべての場合を答えよ。 (3)(2)で求めた場合のうち, 修正後での10人の得点の標準偏差が一番小さくな るものを答えよ。 37 30 50 (1) 10+(10+14 +10+12+18+20+ 23+25 +28+30)÷10 =10+190÷10 =10-19 =294 27×10 290 10 +20 90 50 29 サ (2)AとDAとIAとJ. (3)(i)AとOのとき 女 14,20,20,28,30,32,33,35,38,40 (1)AとⅠのとき S=8,074. (4,20,20,22,28,30,33,35,40,48 S=9,859 38 (ⅲ)AJのとき 14,20,20,22,28,30,33,35,38,50 S=10,05 2. A&D Aと

解決済み 回答数: 1
数学 高校生

「」の部分がわかりません。どなたか教えてください!

000 求めよ。 重要70 重要 例題 102 連立不等式が整数解をもつ条件 xについての不等式 x 2-(a+1)x+a < 0,3x²+2x-1>0 を同時に満たす 整数xがちょうど3つ存在するような定数αの値の範囲を求めよ。 [摂南大 ] 00000 155 FE 基本 31.91 重要 100 CHART • SOLUTION 連立不等式 数直線を利用 不等式の左辺は,両者とも因数分解できる。 甲 分けて解を求める。 前者では文字αを係数に含むから,重要例題 100 と同様, αの値によって場合を F 解の共通範囲に含まれる整数値の考察には数直線の利用が有効である。・・・・ 解答 3章 一残る文字 る yの条件 x2-(a+1)x+a<0 から (x-a)(x-1)<0 <-1 -a→-a 11 よって 1 a -(a+1) a <1 のとき α <x<1 a=1のとき (x-1)2<0 から 解なし (x-1)2は常に 0 以上 Ex≦1)にお 2次不等式 1 <α のとき 1 <x<a 3x2+2x-1>0 から (x+1)(3x-1)>00 O よって x<-1, <a 1 <x 2 3 3 2 3-2 23 ① 1/1 <x<1には整数は含 3 まれない。 x 3 ①②を同時に満たす整数xがちょうど3つ存在するのは a <1 または α > 1 のときである。 [1] a <1 のとき 右の図から,a<x<-1 の範囲 の整数が-2-3, -4であれ ばよい。 -5≤a<-4 a -4-3-2-101 +5 ◆α=-5 のとき,① は -5<x<1 となり x=-5 が含まれず条件 を満たす。 α=-4 のとき, ① は -4<x<1 となり x=-4 が含まれず条件 を満たさない。 (p.55 ズーム UP 参照。) 16 よって [2] α>1のとき されてい よって ① 右の図から、1<x<αの範囲の 整数が 2 3 4 であればよい。 4<a≦5 -2- (1) ・最小値 以上から -5≦a<-44 <a≦5 -1 0 1 2 3 4 13 直は示し う。 PRACTICE・・・ 102 ④ (1)不等式 2x2-3x-5>0 を解け。 (2)(1)の不等式を満たし、同時に,不等式 x2+(a-3)x-2a+2<0 を満たすxの整 数値がただ1つであるように、定数αの条件を定めよ。 [[成城大]

未解決 回答数: 1