学年

質問の種類

数学 高校生

この問題の(2 でなぜ選択肢2が成り立つのか分かりません。照明があるのですがらあまりによって何がわかり、どうして矛盾するのでしょうか、、?、 解説お願いします🙏

例題太郎さんと花子さんは次の証明問題について話している。 二人の会話を読んで下の 問いに答えよ。 問題 直角三角形の斜辺の長さが自然数c, その他の2辺の長さが自然数 a, b であるとき, a, b, c のうち少なくとも1つは5の倍数であることを証明せよ。 花子:直角三角形の3辺の長さといえば,三平方の定理だね。 斜辺の長さが c, そ A の他の2辺の長さがそれぞれα, bだから問題は「自然数 α,b,c が a2+b2=c2 を満たすとき, a, b, c のうち少なくとも1つは5の倍数である」 という性質を証明することだね。 C b B a 太郎:こんな性質があったなんて知らなかったよ。本当に成り立つのかな。 花子: 例えば, a=3, b=4,c=5のときは,cが5の倍数になっているね。 太郎: 他にアのときもこの性質が成り立つよ! どうやらこの性質は成り立つようだね。 じゃ あ、どうやって証明すればいいだろう。 5の倍数であることを証明するから, mを自然数と してα=5mとおいて考えればいいかな。 花子: それだと,その後どうすればいいかわからないよ。こういうときは,授業で習った 「背理法」 を使えばいいんじゃない? 太郎 : 「命題が成り立たないと仮定して, 矛盾を導く」という証明方法だったから,「 A a,b, chi B を満たし,C」と仮定すればいいね。 (1) アに当てはまる最も適当なものを,次の①~③のうちから一つ選べ。 ⑩a=1,6=2,c=√5 ① a=1,6=2,c=3 ② a=8,615,c=17 ③ a=13,6=12,c=5 (2) A B C に当てはまる組み合わせとして最も適当なものを、次の①~③のうちか ら一つ選べ。 イ A B 2+b2=c ⑩ 自然数 ① 自然数 2 ② 自然数 C 自然数 ' +62≠c2 ③無理数 a² +b² c² ²+62=c a2+b2=c a, b, c のうち少なくとも1つは5の倍数でない a, b, c のうち少なくとも1つは5の倍数である a, b, c のいずれも5の倍数でない a, b, c のうち少なくとも1つは5の倍数である 数学- 10

回答募集中 回答数: 0
数学 高校生

こちらの解き方と答えを教えて頂きたいです🙇‍♀️

日本人で, 毛髪の本数も誕生月日 (○○月◇◆日) も性別 (男or女) も全く同じである人が少なくとも2人いる.この ことが成立していることを以下に, 「鳩の巣原理」 を適用し て説明しています。 a, b, cに当てはまる正の整数を, dは 「大きい数」 か 「小 「さい数」のいずれかの語句を答えよ. 尚, 解答の回答には, 「」の入力は不要です. (配点: a2点, b2点, c3点, d3点) 人の毛髪は平均で10,0000 (十万) 本と言われていて 多くても15,0000 (十五万) 本らしいです。 よって、考えら れる毛髪の本数は0本~15,0000本の全 a通りです. 誕生月日については, 閏年の2月29日生まれの方がおられ ることを考慮すると、 考えられる誕生月日は,全部でb通り あります. よって、考えられる (毛髪の本数, 誕生月日, 性別)の相 異なる組は, 全部でc通りになります. これを「鳩の巣」 と 考えます. 一方,「鳩」を日本人と考えると,日本の人口約1, 2000,000 (1億2千万) 人と少なく見積もっても,この数 | は上で求めた 「鳩の巣」 の個数cよりはdなので, 「鳩の巣 「原理」 により, 日本人で毛髪の本数も誕生月日 (○○月◇◇ 日) も性別も全く同じ2人が必ずいることが解りました.

回答募集中 回答数: 0