学年

質問の種類

数学 高校生

問題⑵⑶の数学的帰納法について4つ質問させて下さい!質問量が多くてすみません… ①写真1枚目の赤の下線を引いた部分について、私の解答(写真2枚目)では全て、整数でなく自然数と書きました。私は赤線部分は自然数の範囲に収まるのかなと思っていたので、なぜわざわざ整数と書いている... 続きを読む

2021年度 〔4〕 α=2, b=1および リー an+1=2a+36, b +1=α+2b (n=1, 2, 3, ...) で定められた数列{an}, {bn}がある。 C = a b とおく。 (1) c2 を求めよ。 149 (2) cm は偶数であることを示せ。 (3) nが偶数のとき, cm は28で割り切れることを示せ。 ポイント 連立の漸化式で定められる2つの数列の一般項の積についての数学的帰納法 による証明の問題。 (1) 漸化式でn=1 とおいて求める。 (2) 数学的帰納法により証明する。 (3)n=2mとおいて, m について数学的帰納法で証明する。 解法 (1) a2=2a+3b1=4+3=7 b2=α +261=2+2=4 より C2=azbz=7×4=28 (2) a1=2,b=1,4+1=2a+3bb1=an+2b (n=1, 2, 3, ... より帰納的に a b が整数であると言えるので, cm=amb" も整数である。 cm が偶数であることを数学的帰納法により証明する。 (I)n=1のとき,c=a,b=2×1=2より C1 は偶数である。 (II)n=kのとき cが偶数であると仮定すると, a b は偶数であるから=211は 整数) とおける。 n=k+1のとき ( Level A TRAIGHT Ck+1=ax+1bk+1=(2a+3b) (+26) =2a²+7ab+6b²=2a²+14Z+6b2² =2(a²+71+3b²2 ) ここで, a2+71 + 3b²2 は整数であるから Ck+1 も偶数である。 (I), (II)より すべての自然数nに対してcm は偶数である。 (証明紋) (3) n=2m(mは自然数とおき, C2mm が28で割り切れることを数学的帰納法によ り証明する。 (I) m=1のとき, c2 = 28 より 28で割り切れる。 (II) m=kのときc2が28で割り切れると仮定すると, 28 (1は整数)とおけ る。 m=k+1のとき C24+2=a2+2b24+2 = (2a2+1+3b2+1) (a2+1+2b2+1) = {2 (2a2+362) +3 (a₂+2b₂)}{2a+3b₂+2 (a₂+2b2x)} = (7a2 + 12b2) (4a24+7b₂24) = 28a2²+97a2b2+84b2² = 28a2²+97-28/+84b2x² = 28 (a24² +971 +3b₂²) D ここで, a² +971 +3bz² は整数であるから 22は28で割り切れる。 (I), (II)より. すべての自然数mに対して C2me は28で割り切れる。 ゆえに,nが偶数のとき, cm は28で割り切れる。 (証明終)

回答募集中 回答数: 0
数学 高校生

この問題をlogを使わずに解くことはできませんか? もしできるなら、その手順を教えてください

470 重要 例題 38 am = pa型の漸化式 a=1, an+1=2√an で定められる数列{an}の一般項を求めよ。 指針 に がついている形, a㎡²2 や an+] など 累乗の形を含む漸化式 解法の手順は ①1 漸化式の両辺の対数をとる。 am の係数りに注目して、底がりの対数を考える。 -log.MV=log..M+log.N logpasti = logsp+logpan" ←log A=klog.M すなわち logpan+1=1+qlogpan [2] logpam=ba とおくと 0m+1=1+gbm but=b.+▲ の形の漸化式 (p.464 基本例題 34のタイプ)に帰着。 対数をとるときは, (真数) > 0 すなわち a>0であることを必ず確認しておく。 CHART 漸化式 α+1 = pa" 両辺の対数をと よって, an+1=2√an の両辺の2を底とする対数をとると log2an+1=loga 2√an log2an+1=1+ ゆえに α=1>0で, an+1=2√an(>0) であるから, すべての自に注意 解答然数nに対して an>0である。 -log₂ an 2 bat1-1+1/230円 bn+1-2=1/12 (6-2) 10gzam=bm とおくと 00000 これを変形して ここで bı-2=10g21-2=-2 よって,数列{bm-2} は初項-2,公比 の等比数列で An-1 bn-2=-2 =-2(12) すなわち bm=2-23- したがって, log2an =2-22 から an=22-2 antipa 厳密には、数学的 で証明できる。 ◄loga(2-a) 練習 α1=1, an+1=20m² で定められる数列{an}の一般項を求めよ。 ③ 38 = log22+=logia, ◆特性方程式 a = 1+120 を解くと α=2 =2¹-" logaan=pand" anan+1 を含む漸化式の解法 検討 anan+1のような積の形で表された漸化式にも両辺の対数をとる が有効である。 例えば, logcanan+1=10gcan+logcan+1となり, logcan と 10gean+1の関係式を導くことが できる。 [類 慶応大] p.496 EX21 a

回答募集中 回答数: 0