学年

質問の種類

数学 高校生

赤い丸で囲んであるところが全くわからないです…💦

重要 例題 232 媒介変数表示の曲線と面積 (2) 媒介変数tによって, x=2cost-cos2t, y=2sint-sin2t (0≦t≦) と表される右図の曲線と, x軸で囲まれた図形の面積Sを求めよ。 PALER CH CHART 解答 図から, 0≦t≦↑ では常に y≥0. また OLUTION 基本例題228 では,t の変化に伴ってxは常に増加 したが, この問題ではxの変化が単調でないとこ ろがある。 右の図のように、 t=0 のときの点をA, x座標が 最大となる点をB (t=to でx座標が最大になると する), t=π のときの点をCとする。 この問題では点Bを境目としてxが増加から減少 に変わり, x軸方向について見たときに曲線が往 復する区間がある。 したがって, 曲線 AB をy, 曲線 BC を とすると, 求める面積Sは CONTO S=Synx Synx と表される。・・・・・ 2008 y=2sint-sin2t=2sint-2sintcostanial =2sint(1-cost) よって, y=0 とすると 0≦t≦x から t=0, π 次に, x = 2cost-cos 2t から dx dt -=-2sint+2sin 2t =-2sint+2(2sintcost) =2sint(2cost-1) 0 <t<π において 1 FAVO dx - = 0 とすると, sint> 0 から dt 「 cost=- ゆえに π t=₁ よって、xの値の増減は右の表のようになる。 sint = 0 または cost=1+sajest 15 0<a Fachs C In t dx dt x よって,xの値の増減を調べ, x座標が最大となるときのtの値を求めてSの式 を立てる。また,定積分の計算は,置換積分法によりxの積分からの積分に直 して計算するとよい。 -3 t= を求めている。 y2 0 0 1 0000 y₁ 13 S 曲線が往復 している区間 (小 ... yA + 0 Hinf. 0≦t≦π のとき sint≧0,cost≦1 から y=2sint(1-cost) 20 としても,y≧0 がわかる。 0 A 1 t=0+ π 3 0 3 2 基本 228 *** •B TI [] t=to π 0 -3 ゆえに, osts におけるy をyi, sts におけるyを X=- 20030-caso =2-1 [ ] とすると, 求める面積Sは s=S²¸y=dx−Svidx ここで、0≦ osts において、 x=1のとき t=0, であるから また、において x=2のとき 一 であるから よって 3 x= のとき S² vidx=Sy dx ここで dt dt x=3のときt=" S²¸yzdx=Syddt t=7 s-Syndx-S² vndx-Syddi - Sydd dt dx -Sidedt + Sy dr dt-Sydx dt =S(2sint-sin2t)(−2sint+2sin2t)dt = S-2s -2sin22t+6sin2tsint-4sin't)dt =2f (sin2t-3sin2tsint+2sint)dt 4t sin 2t dt-S¹-cost dt-t-sin 4- ・dt=- 2 (3sin2tsintdt-3" 2 sint cost-sintdt EES S2 sintdt=2^1-69824dt=[1-1/2 sin24] 月 sin'tdt=2f"1-cos2tat=| =1 S= = -65 sint cost dt = 65" sinºt(sint)dt = 6-sin't] =0 =6 Y -3 注意 と は,xの式と しては異なるから |Sydx-vidx=S_¸ydx としてはいけない。 一方の式としては同じ y=2sint-sin2t) で表さ れる。 355 Sf(x) dx = -f(x) dx Sf(x) dx + f(x) dx -Sof(x)dx ← S₁ƒ (x) dx = -S₁ƒ (x) dx 1-cos 20 2 inf. 積和の公式から 3sin2tsintdt sin'0= ---√ (cos (cos 3t-cost)dt -sin 3t- =0 したがってS203 としてもよい。 [inf. この例題の曲線は, カージオイドの一部分である(p.103 補足参照)。 Tri y PRACTICE・・・・ 232 ④ 媒介変数tによって, x=2t+t, y=t+212 (-2≦t≦0) と表される曲線と, y軸で 囲まれた図形の面積Sを求めよ。 ds de 8章 25 20

回答募集中 回答数: 0
数学 高校生

マーカーの部分を詳しく教えてください🙏

福祉大] 基本16 項は wak k 日本 例題18 次の数列の和を求めよ。 CHART 第k項に 第k項を含む数列の和 1.(n+1), 2∙n, 3.(n-1), & THINKING を含む数列の和の計算 まず第k項(一般項)、次に和の公式 n 口は1, 2, 3, ......, n-1, n ○はn+1,n,n-1, ......, 3,2 n 基本例題17と同様, 各項は□〇の形。 □〇を分けて考え、それぞれの項をkの 式で表そう。 ......., (n-1)3.7.2 k=1 この数列の第k項は k{(n+1)+(k-1)·(−1)}=−k²+(n+2)k したがって、求める和をSとすると →第k項はん 初項n+1の等差数列である。 第k項はんを用いてどう表せるだろうか? と○を掛けたものが、与えられた数列の一般項 α となる。 項数は口の数列からとわかる。 S={-k²+(n+2)k}=-2x+(n+2) 2k k=1 −−— n(n+1)(2n+1)+(n+2) • ½{/n(n+1) == +(1+2+………+n) n -22 (1+2+k+1/12 (+1) k) = k=1 30.1 = n(n+1){-(2n+1)+3(n+2)} 6 = n(n+1)(n+5) 別解 求める和をSとすると S=1+(1+2)+(1+2+3)+......+(1+2+………‥+n) 00000 = 2/k(k+1) + n(n+1) 2 = 6 基本17 379 {}の中は、初項 n + 1, 公差-1の等差数列の 一般項。 n+2はに無関係 → 定数とみて、Σの 前に出す。 1歳 1m(+1)でくくり。 {}の中に分数がでて こないようにする。 +) 1-(n+1) ← 1+1+1+ ··..... +1+1 2+2+ ...... +2+2 ·+······ +3+3 n+n は、これを縦の列ご = 12/12/12 (k² + k) + ₁ + 1 1/2 n(n+1) == 1/2/ ②+2+n(n+1)} とに加えたもの。 2k=1 2k=1 k=1 =12/11n(n+1)(2n+1)+1/n(n+1)+n(n+1)} -1.0/n(n+1)(2n+1)+3+6/11/2m(+1+5 3 種々の数列

回答募集中 回答数: 0