学年

質問の種類

数学 高校生

これの(2)でr=0、1、2で場合分けしてると思うんですけど、なんで場合分けした各値を足しているんですか?普通場合分けの時って、答えはr=0のとき〇〇、4=1のとき〇〇みたいに書くんじゃないんですか?

次の式の展開式における,[]内に指定された項の係数を求めよ。 (1) (x+2y+3z) [x°yz] [武蔵大] (1+x+x2)[x] [愛知学院大 ] P.16 基本事項 指針 二項定理を2回用いる方針でも求められるが,多項定理を利用して求めてみよう。 解答 n! (a+b+c)" の展開式の一般項は p!q!r! a'b'c', p+q+r=n (2)上の一般項において, α=1, b=x, c=x2 とおく。 このとき,指数法則により 1.xq(x2)'=x9+2r である。 g+2r=4となる0以上の整数 (p, g, r) を求める。 (1) (x+2y+3z) の展開式の一般項は 4! 4! pigirix (2y)(3z)=(piair! 20.3)xyz ただしp+q+r=4, p≧0,g,r (a+b+c)の一般項は 4! p!q!r! a'b'c' (p+gtr=4, p≧0, q≥0, r≥0) を これら xyz の項は,p=2, g=1,r=1のときであるから 4! ・2・3=72 2!1!1! 別解 {(x+2y) +3z} の展開式において, zを含む項は C(x+2y) •3z=12(x+2y) z また, (x+2y) の展開式において,xy を含む項は Cx2.2y=6x2y よって, xyz の項の係数は 12×6=72 (2) (1+x+x2)の展開式の一般項は 二項定理を2回用いる方 針。 まず(+32) の展 開式に着目する 二項定理 8! 8! 1.x(x2)= p!g!r! *x9+2+ <(cm)=am p!q!r! ただし p+g+r=8 ①, p≥0, q≥ ≥ dp, g, rは負でない整数。 ****** p=r+4 4-2r≥0 ****** ③ ②①に代入すると p+4-2r+r=8 xの項は, g+2r=4 すなわち g=4-2r のときであり, ① ② から ここで,②g≧0 から rは0以上の整数であるから ②③から r=0 のとき r=1のとき p=5g=2 よって, 求める係数は 8! r=0, 1, 2 p=4,g=4 r=2のとき p=6,g=0 44-27205 r≤2 8! 8! + =70+168+28=266 4!4!0! 5!2!1! 6!0!2! 40!=1

解決済み 回答数: 1
数学 高校生

数IIの二項定理に関する問題で質問です 赤い線の部分が全く理解出来ていません。わかりやすく説明していただけると嬉しいです🙏🏻🙏🏻

21 」の考えを利用して証 5 (1) の数を,次の2通り nCkxk )。 ■Xn-1 Ck-1 通り える。 2通りがある 解答 ば、n個の要素 一選ぶと考える。 重要 例題 6 n桁の数の決定と二項定理 (1) 次の数の下位5桁を求めよ。 (ア) 101100 (イ) 99100 (2)2951900で割ったときの余りを求めよ。 [類 お茶の水大] 基本1 (1)これをまともに計算することは手計算ではほとんど不可能であり,また,それ を要求されてもいない。 そこで,次のように 二項定理を利用すると,必要とされ る下位5桁を求めることができる。 (ア) 101100=(1+100)100= (1+102 ) 100 これを二項定理により展開し、各項に含ま れる 10^(nは自然数) に着目して、下位5桁に関係のある範囲を調べる。 (イ) 99:00=(-1+100)100= (-1+102) 100 として, (1) と同様に考える。 (2)(割られる数)=(割る数)×(商)+(余り)であるから, 2951 を900で割ったと きのを M, 余りを とすると, 等式 2951= 900M+r (M は整数,0≦x<900)が成 り立つ。295=30-1)51であるから,二項定理を利用して (30-1)を900M+r の形に変形すればよい。 (1) (ア) 101100(1+100)'OO=(1+102) 100 =1+100C1×102+100C2×10^+10°×N =1+10000+495×105 + 10°×NEY (Nは自然数 この計算結果の下位5桁は,第3項 第4項を除いて も変わらない。 よって, 下位5桁は 10001 展開式の第4項以下をま とめて表した。 10"×N (N, n は自然数, n≧5) の項は下位5桁の 計算では影響がない。 1 章 3次式の展開と因数分解、二項定理 00100-( 1100)100_(_1+102) 100

解決済み 回答数: 1