学年

質問の種類

数学 高校生

この四角でかこったとこがなぜそうなるのかわかりません、 写真2枚目にあるように、確率の乗法定理により、かけると思いました、 教えてください!

指針 (1) の確率は PA (B) である。 条件付き確率の定義式 ne PA(B) == を利用して求めてもよいが,この問題のように, 個数の状態の変化の過程がわかる! のは, 解答のように考えた方が早い。 1回目に赤玉を取り出すという事象をA,2回目に赤玉を 解答 取り出すという事象をBとする。 (1) 求める確率は PA(B) 1回目に赤玉が出たとき, 2回目は赤玉4個、青玉4個の 計8個の中から玉を取り出すことになるから POA 4_1 200 PA(B)= 8 2 (2) 求める確率はP (B) 1回目に青玉が出たとき, 2回目は赤玉5個、青玉3個の 計8個の中から玉を取り出すことになるから 10. よって ANBの起こる確率 _P(A∩B) A の起こる確率 よって PA(B)=- Pa (B)= 5 8 別解] [条件付き確率の定義式に当てはめて考える] 5P₂ 5.4 5 (1) P(A)= 5, P(ANB)= 9' OP2 9.8 18 PÂ(B)= P(A∩B) P(A) (2) P(A)= 4, P(ÃΜB)=¹P₁X5P₁ P(A∩B) EP(A) 5 18 P2 5 P(A) 全体をAとしたときのA∩Bの割合 ·1· 18 || 5-94-94-9 ÷ 4-5 9.8 5 = 18 5 = 9 1 2 5 18 ( 59 5 18 4 8 (1) 041 〇4個 051 031 O 188 赤玉 考える。 O 1BB 残りを 考え 「取り出した玉を振 と考え、順列を利 取り出し方を数え 例えば、(1)では P(A∩B)に関し Ri, R2, 5個を 青玉4個を Bt, B〟 と区別して 並べ方 P2通りとして 2080 ⑨58 出し, それをもとに戻さないで、続けてもう1枚取り出す。 練習 1から15までの番号が付いたカードが15枚入っている箱から, カードを (1) 1回目に奇数が出たとき, 2回目も奇数が出る確率を求めよ。 (2)1回目に偶数が出たとき, 2回目は奇数が出る確率を求めよ。

未解決 回答数: 1
数学 高校生

63. 記述に問題点等ありますか??

る確率 機械 63 良品 械 A を当 の意 製造 3 50 ベイズの定理 重要 例題 63 袋には赤球10個,白球5個,青球3個;袋Bには赤球8個,白球4個,青球 00000 ;袋Cには赤球4個,白球3個,青球5個が入っている 1 3つの袋から1つの袋を選び, その袋から球を1個取り出したところ白球であっ それが袋Aから取り出された球である確率を求めよ。 した。 袋Aを選ぶという事象をA, 白球を取り出すという事象をWとすると, 求める確率は P(WNA) 条件付き確率Pw (A)= よって、P(W),P(A∩W)がわかればよい。まず,事象 Wを3つの排反事象 [1] A から白球を取り出す,[2] B から白球を取り出す, [3] C から白球を取り出す に分けて, P(W) を計算することから始める。 また P(A∩W)=P(A)P(W) 袋 A, B, C を選ぶという事象をそれぞれ A, B, C とし, 白球 | ⑩ 複雑な事象 を取り出すという事象をWとすると 排反な事象に分ける P(W)=P(A∩W)+P(B∩W) + P(COW) 1 1 5 3 18 よって 求める確率は =P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 1 5 + 3-2 2-3 41 +2²7 + 1/²2 - 11 12 54 4 + 1 4 3 18 検討 ベイズの定理 上の例題から、Pw (A)= AMB, A₂B, 一致し,PB (Ak)= P(W) である。・・・・・・・・・ Pw(A) = P(ANW) _ P(A)PÂ(W) _ 5 P(W) P(W) 54 . P(B) ·|· P(B) 1 10 4 27 加法定理 乗法定理 基本 62 A B C AOW BOW Cow 2 27 W 5 542 P(A)PA (W) P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 一般に, n個の事象 A1, A2, ・・・・・・, An が互いに排反であり, そのうちの1つが必ず起こるもの とする。このとき 任意の事象B に対して,次のことが成り立つ。 PB(AR)= P(Ah) PAN (B) (k=1,2,.., n) P(A)PA,(B)+P(A2)P,(B)+......+P(A)Pa,(B) | これをベイズの定理という。このことは, B=(A∩B) U(A20B) U......U (A∩B) で, A∩Bは互いに排反であることから、上の式の右辺の分母が P(B) と一 P(B∩Ak)P(A∩B) かつP(A∩B)=P(Ak) Pa, (B)から導かれる。 001 が成り立つ。 14 12 A-0004 練習 =) 45 (1 63 仕入れた比率は4:3:2であり, 製品が不良品である比率はそれぞれ3%, 4%, ある電器店が A 社, B 社 C社から同じ製品を仕入れた。 A社、B社、C社から | 5%であるという。 いま、大量にある3社の製品をよく混ぜ,その中から任意に1 [類 広島修道大] (p.395 EX46 |個抜き取って調べたところ, 不良品であった。 これがB社から仕入れたものであ る確率を求め 393 2章 9 条件付き確率 る る る る。 立つ。 である である m-1) 倍数で である 1, 2) ったと 灼数は, あるな を満 には, ①へ。 14234 n進 という。

回答募集中 回答数: 0
数学 高校生

この問題が分かりません💦😭😭 Bが当たる確率を求める時は、 Bが1回目か2回目に当たるという言い方なのに、 Aが当たる確率を求める時は1回目に当たる確率と2回目に当たる確率を分けて考えているんですか? 教えてください🙇‍♀️🙇‍♀️

やや複雑なくじ引きの確率 要 例題 61 当たり3本,はずれ7本のくじをA,B2人が引く。 ただし, 引いたくじはも とに戻さないものとする。 まずAが1本引き、はずれたときだけがもう1本引く。次にBが1本引き, はずれたときだけBがもう1本引く。このとき, A,Bが当たりくじを引く確 P(A), P(B) をそれぞれ求めよ。 [類 大阪女子大] 基本 54 CHART & SOLUTION 複雑な事象の確率 排反な事象に分解する Bが当たりくじを引くには,次の3つの場合がある。 [1] Aが1回目で当たり,Bが1回目か2回目に当たる。 [2] Aが1回目ははずれて, 2回目で当たり,Bが1回目か2回目に当たる。 [3] Aが1回目も2回目もはずれて,Bが1回目か2回目に当たる。 本問のように複雑な事象については、変化のようすを 樹形図で整理し,樹形図に確率を書 き添えると考えやすい。 MH00 A Aが 1回目で当たる確率は Aが1回目ではずれ, 2回目で当たる確率は 1x= 7 10 9 30 これらの事象は互いに排反であるから 3 7_16_8 10 30 30 15 P(A)=- + 3 10 7 10 [1] [2], [3] は互いに排反であるから 9(A)¶ 7 P(B) = 3 (2+ 2 × 2) + 2) × 2 (3) 3/262) + 109 9 10 98 8 5 6/3 + 98 8 × Bが当たりくじを引くには,次の3つの場合がある。 [1] Aが1回目で当たり,Bが1回目か2回目に当たる [2] Aが1回目ではずれて, 2回目で当たり,Bが1回目 か 2回目に当たる (3)(A)+(3)(A) [3] Aが2回ともはずれて, Bが1回目か2回目に当たる [2]xO- Ana) 8 + 7/7 8 13 3 120 10 15 06- 当たるときを ○, はずれる ときをxとすると -- A B [1] JE 3 10 73 10 9 [3] xx- BO 7 6 10 9 2 9 XO 1/2 - 1/1/0 7.2 98 X 8 3-8 62 87 53 87 2章 6 条件付き確率,確率の乗法定理,期待値

回答募集中 回答数: 0