学年

質問の種類

物理 高校生

ダイオードと豆電球の問題なのですが、Ⅲで答えがそのようになる理由がわからないので説明して頂きたいです。よろしくお願い致します。

第2問 ダイオードは,順方向に電圧を加えると, 流れる電流が電圧とともに急激に増大する特性をもつ。電球は,電圧 の上昇とともに熱としてエネルギーが失われるために、電圧とともに電流の上昇が徐々にゆるやかになる。電流と 電圧の特性が図2-1の曲線で表されるダイオード1個 (D)と、電流と電圧の特性が図2-1の曲線bで表され る特性の等しい電球 2個 (L, Lg)を, 図2-2のように起電力 V で内部抵抗が無視できる直流電源と接続した。 直流電源の電極側の点Bは接地した。 以下で、ダイオード、電球の抵抗値とは,それらの両端の電圧を,それら に流れている電流で割ったものとして定義する. I 図2-1に示す特性のダイオードと電球について以下の問いに答えよ。 (1) ダイオードの両端の電圧が0.70Vのときのダイオードの抵抗値はいくらか、 図2-1のグラフから読み 取った値を使って有効数字2桁で求めよ. (2)電圧が上昇するにつれて,ダイオードの抵抗値はどのように変化するか、以下の選択肢から選べ. (ア) 急激に増大する (イ) 急激に減少する (ウ) 変化しない (3)電球の両端の電圧が0.30Vのときの電球の抵抗値はいくらか。 図2-1のグラフから読み取った値を 使って有効数字2桁で求めよ. (4) 電圧が上昇するにつれて、 電球の抵抗値はどのように変化するか、以下の選択肢から選べ. (ア) 急激に増大する (イ) 急激に減少する (ウ) 変化しない -4- 九州工改題) 電流 [A] 3.0 2.0 1.0 Dale A. 0 1.0 0 0.5 電圧[V] 図2-1 直流電源 V [V] B L1 L2 図 2-2 -5- b 1.5 2.0 A 09 1124 D 076

回答募集中 回答数: 0
数学 高校生

例題56の解答(イ)で、なぜx=-2の時y=1とわかるんですか? 定義域と値域の領域をグラフに書き込んで斜線を書いてみましたが、この中ならどの点でも与えられた定義域と値域を満たせてしまうのでしょうか。

例題 56 値域からの1次関数の決定 ★★ 関数 y=ax+b (−2≦x≦1)の値域が1≦y≦ 7 であるとき、定数 α. bの値を求めよ。 (129) 《Action 関数の値域は、定義域の範囲でグラフをかいて考えよ 思考プロセス 場合に分ける (ア) a=0 (イ)a>0 y=ax+b (−2≦x≦1) の グラフを考えたいが,αの値 によって, 「右上がり」 か 「右下がり」か 「x軸に平行」 か変わるから、場合分けして y4 yA 例題 55 (ウ) a<0 34 思考のプロセス 2 0 1 x -201 x -20 1x x軸に平行 右上がり 右下がり 考える。 例 34 問題文では,単に「関数y=…」となっており, 1次関数とは限らない。と よって, α = 0 のときも考えなければならない。 Action 》 最高次の係数が文字のときは, 0かどうかで場合分けせよ 解 (ア) α = 0 のとき y=6 となり, 値域が 1≦y≦7 となることはない。 イ) α > 0 のとき 例題 55 値域が 1≦y≦7 となるのは, グラフ 2点 (-2, 1), (1, 7) を通るときで あるから 7 |1=-2a+b 17=a+b よって a=2,6=5 これは, a>0 を満たす。 201 x x 軸に平行な直線となる。 右上がりの直線となる。 例題 31 x = -2, y = 1 を代入する。 x=1,y=7 を代入する。 (ウ) α < 0 のとき。 例題 55 値域が1≦y≦7 となるのは, グラフ ●場合分けの条件を満た すかどうか確かめる 右下がりの直線となる。 2 (27), (1, 1) を通るときで あるから -- 7 20 17=-2a+b l1=a+b よって a=-2,6=3 これは, a <0 を満たす。 (ア)~(ウ)より, 求める α, 6の値は Ja=2 (a = -2 16=5, 16=3 練習 56 関数 y=ax+b (1≦x≦4) の値域が 1≦ys10 であるとき, 定数α, b の 値を求めよ 10- -20 1x x=-2,y=7 を代入する。 x1 = を代入する。 位 P 職場合分けの条件を満た すかどうか確かめる。

解決済み 回答数: 1