学年

質問の種類

理科 中学生

(4)の簡単な解き方とかありますか??なかったら普通の解き方で大丈夫です!

N E 図1は,A~D地点の標高と位置関係を表している。 また, 図2は,A~C地 点でボーリング調査を行った結果をもとに地層の重なりを表したものである。この 地域の地層は,上下の逆転やずれはなく,各層は平行に重なっており、ある一定の 方向に傾いている。また,それぞれの地層には、化石は見られなかった。 図 1 地形図 ABラインは図2 -100m- 90m- B 火山灰 の 火山が噴② 1 ②たときの噴火(1) いが分かるから 35 90m 高さをかいちゃう! 10-15=55 31の 泥の層 70-1060 火山灰の層 れきの層 ° ° ° m 砂の層 (3) 10mから15m 60 [(4) 南 Yom 100m 'A B 地表からの深さ m tex Y 1080 190 600 20-70 80 50 3060- 。。 。 ° OX [m] 40-50- ° •FRe- ° -6-0 ° ° C ° ° 400 330- ° 40 50 50 55 5 -80m- 70m- .60m、 250ml 東 10mあげたらいっしょ! (1) 図2からわかるように、調査の結果,砂の層きの層火山灰の層,泥の 層の4つの層が見られた。 ① 4つの層のうち, 鍵層として利用できるのはどの層か。 ② ①のように考えられる理由を簡単に書きなさい。 (2) B地点で, れきの層の上部は,地表からの深さが何mのところにあるか。 (3) C地点で,火山灰の層は、標高何m から何mの間にあるか。 (4)この地域の地層は,北、南東,西のうち、どの方位に向かって低くなってい るか。 西4 Aとくと比べる (5) 図2のX~Zの各層を,堆積した順に並べなさい。 (6) D地点でボーリング調査をすると, 火山灰の層はどこにあるか。 解答欄の図 に斜線で示しなさい。 (6) → Z → 10 地表からの深さ m 20 深 30 [m〕 40- 50 (3

未解決 回答数: 1
数学 中学生

この問題教えてください

水 2 9 木 3 10 17 24 まり、 18 25 章のとびらからLINK!! 数学の広場 2つの自然数の積を簡単に求める方法 13ページで計算したとおり, 十の位の数が同じで、一の位の数の和が10になる 2桁の自然数どうしの積は,次のようにして求めることができます。 ① 2桁の自然数の十の位の数と十の位の数に1を加えた数の積を, 千の位と百の位に書く。 (求めた積が1桁のときは、百の位に書く。) ② 2桁の自然数の一の位どうしの積を, 十の位と一の位に書く。 (求めた積が1桁のときは、一の位に書き, 十の位には0を書く。) am 24 58 71 × 26 × 52 × 79 5609 624 L4x6 -2×(2+1) 3016 -8×2 -1×9 -5×(5+1) -7x (7+1) ○上のように計算できることを, 文字を使って証明してみましょう。 証明 2つの2桁の自然数は, 十の位の数が同じで、一の位の数の和が 10 だから, a, b, c をすべて9 以下の自然数とし,b+c=10と すると,それぞれ10a+b10a+c と表すことができる。 したがって, それらの積は, (10a+b)(10a+c)=(10a)2+( × 10a + =100a2+10ax10+ =100 (a2+α) + =100 + 1 3式の利用 と は、ともに1桁あるいは2桁の自然数だから、 が千の位と百の位に書かれる数, | が十の位と一の位に 書かれる数になる。 45ページで,ほかの2桁の自然数どうしの 積の求め方についても考えてみよう。 41

未解決 回答数: 1
数学 高校生

上から4行目はなぜこうなるのですか?

基本 例題 29 漸化式と極限 (4) *** 連立形 00000 P1(1, 1), Xn+1 1 = 4 4 xn+n, In+1= 5 3 -xn+ 4 面上の点列 Pn(xn, くことを証明せよ。 指針 点列 P1, P2, yn) がある。 点列 P1, P2, 1 5yn (n=1, 2,......) を満たす平 がある定点に限りなく近づくことを示すには,lim, limyn がと はある定点に限りなく近づ [類 信州大 ] p.36 まとめ, 基本 26 n→∞ もに収束することをいえばよい。 そのためには,2つの数列{x},{y}の漸化式から Xn, yn を求める。 ここでは,まず,2つの漸化式の和をとってみるとよい。 (一般項を求める一般的な方法については、解答の後の注意のようになる。) 811 Xn+1= 1 3 xn+ yn ①, Yn+1= 解答 4 1 x n + 1 − y n 5 Yn ② ①+② から Xn+1+yn+1=Xn+yn P1(1, 1) から x+y=2 x=1, y=1 よって xn+yn=xn-1+yn-1==x+y=2 ゆえに yn=2-xn これを①に代入して整理すると 11 Xn+1= xn+ 20 85 32 変形すると 11 32 Xn+1 xn 31 20 31 32 1 また X1 31 31 32 ゆえに Xn =- 31 31/ (-20 n-1 32 1 よって n→∞ また 32 30 limxn=lim no31 31 limyn=lim (2-x)=2- 1+0=and -20))} = 32 Q=-- a+ 32 31 数列{X-3は 1 |Xn+1= xn+ 特性方程式 11 20 8-5 の解 a= 公比 31 ラ 11 31 - 20 818 n→∞ 31 31 比数列。 y=2xから。 したがって, 点列 P1, P2, ...... は定点 31' 31 3230 に限りなく近づく。 一般に, x=a, y=b, xn+1=pxn+gyn, yn+1=rxn+syn (pqrs≠0) で定められる {x}, {yn} の一般項を求めるには, 次の方法がある。 方法1 Xn+1+αyn+1=β(x+αyn)としてα, β の値を定め, 等比数列{xn+yn} 用する。

未解決 回答数: 1
日本史 高校生

この答え持ってる方いたら教えてください!

STAGE A 用語チェック 旧石器文化 縄文文化 ① 氷河時代ともよばれる,約1万年前までの時代を地質学では何というか。 ② 1946年に相沢忠洋によって発見された, 群馬県の旧石器時代の遺跡名を答えよ。 ③ 旧石器時代の終わりごろ広まった, 木などに埋め込む組合せ式の石器を何と いうか。 ④ 北海道白滝や長野県和田峠などで産出される石器の原材料を答えよ。 もり ⑤ 動物の骨や角から作られた釣針や銛などを何というか。 ⑥地面を掘り、柱を立てて屋根をかけた縄文時代の住居を何というか。 ⑦ 縄文時代の女性をかたどった人形を何というか。 あらゆる自然物や自然現象に霊威を認める考え方を何というか。 ⑨ 死者の霊を恐れ, 手足を折り曲げて埋葬する方法を何というか。 農耕文化の成立と小国分立 ① 縄文晩期の水田跡が発見された福岡県の遺跡名を答えよ。 ② 石包丁による稲の収穫方法を何というか。 ③ 収穫物を保存するために作られた, 床の高い建物を何というか。 ほり ④ 戦いに備え, 周囲を濠や土塁で防御した集落を何というか。 ⑤ 九州北部で見られる, 大きな石をいくつかの石で支えている墓を何というか。 ⑥ 弥生時代の青銅製祭器のうち, 近畿地方を中心に分布するものは何か。 ⑦ 紀元57年に中国の皇帝から印綬を授けられたのは倭の何という国か。 ⑧ 江戸時代に⑦の印綬が発見された志賀島は、 今の何県にあるか。 ① ② ③ ⑤5 6 (7) ⑧ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧8 ⑨ ⑨ 邪馬台国の卑弥呼が中国の皇帝からおくられた称号は何か。 3 古墳文化とヤマト政権 ① 古墳の形で最も重要とされ, 大規模古墳に採用されている墳形は何か。 ② 古墳の墳丘上に並べられた, さまざまな形の素焼きの土製品を何というか。 ③ 古墳時代前期・中期の石室の形状を何というか。 ④ 仁徳天皇陵とされる, 大阪府堺市にある最大規模の古墳名を答えよ。 ⑤ ヤマト政権が朝鮮半島南部に進出して求めた資源は何か。 ① 2 ③ ④ 5 ⑥ 391年にヤマト政権が交戦した朝鮮半島の国はどこか。 6 ⑦ 古墳時代後期に見られる一か所に集まった多数の小古墳群を何というか。 豊作を神に祈る春の祭りを何というか。正面 7 ⑧⑧ □ ⑩ 埼玉県・稲荷山古墳の鉄剣銘や熊本県・江田船山古墳の鉄刀銘に見られる 熱湯に手を入れさせただれたかどうかで真偽を判断する裁判を何というか。 9 10 「獲加多支鹵大王」にあたる天皇は誰か。 11 17世紀中ごろから近畿の大王の墓に採用された墳形を何というか。 12 血縁を中心に大王によって編成された豪族の同族集団を何というか。 13 豪族の政権内での地位や職務に応じて、大王が与えたものを何というか。 146世紀初めに新羅と組んでヤマト政権に反乱を起こした人物は誰か。 15 大王が日本各地に設けた直轄地を何というか。 ⑩6 有力豪族の私有地を何というか。 12 13 14 15 16 5

回答募集中 回答数: 0
数学 高校生

数IIサクシード 不等式の表す領域400 不等式の表す範囲、グラフは書けたのですが、全ての組み合わせを書くとなると、領域ギリギリのところを見落としたり、余分に数えたりすることが多いです。正確に全て書くコツや見落としていないか確認する方法はありますか?

>0 すなわ y- x+. 8-5 K1 -2 分である。 直線 BC の方程式は 直線 CA の方程式は x=-3 y=-3-2 -1-0 (x-2) -60 すなわち y=- 1 2 1≤0 -2 rec A, B, C を頂点とす る三角形の内部および 周上は,右の図の斜線 部分である。 ただし, 境界線を含む。 B 3 ある。 この斜線部分は, 直線ABの下側, C -1A 直線 BC の右側, 直線 CA の上側, の共通部分である。 80 x=2のとき,①,②から y² <4, y>- これを満たす整数yは y = 0,1 y2<1,y>0 x=3のとき,①,②から これを満たす整数y は存在しない。 よって、求める整数 ( x, y)の組は T-1, 0), (0,1),0,0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) 401 (1)xy>1から x-y<-1 または 1<x-s すなわち y>x+1 または y<x-1 よって,求める領域は 〔図] の斜線部分である。 ただし、境界線を含まない。 (2)x+y≤1 …………… ① x0,y≧0のとき,①は x+y≤1 よってy≦-x+1 x0,y<0 のとき,①は x-y≤1 よってy≧x-1 x< 0, y≧0 のとき,①は よって, 求める連立不等式は x+y よって y≦x+1) y- [y≤ -1x+ 4 8 x < 0, y<0 のとき,①は 5 x≧-3 (4x+5y-8 10+よって y≧-x-1 すなわち x+3≥0 ゆえに、求める領域は [図] の斜線部分である。 ただし,境界線を含む。 大 1 2 x-5y-2 この図の斜線部分1 (2) (1) 400 x2+y2-2x-4<0から +2 (x-1)2+y2<5 >4 x-2y-3<0から 3 y> 2x-2 ② よって, 与えられた不 等式の表す領域は,右 の図の斜線部分である。 ただし,境界線を含ま ない。 1-√5 図から 1-√5 <x<1+√5 これを満たす整数xは x=-1のとき, ①,②から これを満たす整数yは x=-1, 0, 1,2,3 x=0のとき, ①,② から これを満たす整数y は x=1のとき, ①,② から これを満たす整数 yは ① −10 -1 y2<1,y>-1 y=0 <4,y> / y=-1, 0, 1 y2<5, y>-1 y=0, 1, 2 402 指針 直線 y=ax + b が2点 P, Q を結ぶ線分 PQ と 両端以外で交わるとき, 右の図からわかるよう に, 2点P, Qは,直線 y=ax+bに関して反対 側にあるから、点P, Q y y>ax+b Q x <ax+b の 一方がyax+b の表す領域, 他方がy <ax+b の表す領域 にある。 条件を満たすのは、2点P,Qのうち,一方が直 線 y=ax+b の上側,他方が下側にあるときで ある。

未解決 回答数: 1