学年

質問の種類

理科 中学生

グラフのメモリ?の数とか書き方とか教えて欲しいです明日提出なので焦ってます🙇‍♀️

実験 物体のもつエネルギーと速さや質量の関係を調べる。 方法 小球の種類や速さを変えて小球を転がし、木片の移動距離を調べる。 結果 表を記入後、下のグラフに表す。 平均が割り切れない場合は、小数第3位を四捨五入する。 木片の移動距離(cm) 小球の 質量 速さ (km/h) エネルギー ② 運動エネルギー・ 《小球の高さ10cm》 速さ平均 km/h 2,28 228 2.3 B261 13.69 367 83.65 B 2.36 2.45 2.59 2.5 3.6 速さ 《小球の高さ20cm》 速さ平均 km/h) km/h 木片の移動距 m 2.98 64 0.20.26 2.342.6 木片の移動距 距平均 (am) 0,3 0.3 1.3 5.0 5.2 10.3 51 小球の高さ(km/h) 小球の速さと木片の移動距離の関係 (グラフ3本) 2.5 3,243,2 3,39 4.74 14.78 14.78 14.7 木片の移動(cm) 0.3 (am) 4:チ 平均 0.7 0.40.5 速さ (km/h) 362 326 小球の高さ30cm》 速さ平均 kmmti 小球の高さ10cm No.19 (提出) 10.7 0.43.35 3.40.50.6 木片の移動距 Mari 距平均 fami 0-7 10.7 10.4 24 0.7 5.3 5.24 5.25 6.5 6.5 6.6 ◎運動している物体がもっているエネルギー⇒ Q すいかを簡単に割るには、 どうしたらいいのだろう? Nb18 19から具体的に。 考察 ①表やグラフから、小球がもつエネルギーの大きさと、小球の速さと質量の関係は、どのようになっているか。 ②小球がもつエネルギーは、どのようなときに大きくなるといえるか。 106 小球の質量(g) 小球の質量と木片の移動距離の関係 AUKU 31

解決済み 回答数: 1
数学 中学生

(3)についての質問です。 なぜ合計が130mだと分かるのか教えてほしいです🙇‍♀️ (黄色のところです)

思考・判断・表現 3 下の図のように,東西にまっすぐ延び ている道路があり, バス停にバスが停車し ている。 太郎君は,自転車で西から東に向 かって秒速4mで走り、太郎君の自転車が バス停を通過するのと同時にバスが東に向 かって動き始めた。 バスが動き始めてからx秒間に進む距 離をymとすると,最初の10秒間では関 数y=12x²の関係がある。その後,バス は秒速10mで進む。 (群馬) ( 14点×3) Ly 太郎 バス バス停 (1) バスが動き始め てから10秒間の, xとyの関係を表 すグラフをかきな さい。 y=12x²のグラフで, 0≦x≦10の範囲をかく。 $ 花子 (m) y 50 40 30 20 10 東 I 0 2 4 6 8 10(秒) (2) バスが太郎君の自転車に追いつくのは, バスが動き始めてから何秒後ですか。 バスの進む距離と太郎君の進む距離が同じになっ たときだから, バスが動き始めてから秒後とする と、 1/23f=4tf-8t=0 t=0,t=8 t>0より, t=8 8秒後 (3) 花子さんは、バスが動き始めたとき, バ ス停から130m 東の地点を西に向かって 秒速2mで走っていた。 バスが花子さん とすれ違うのは, バスが動き出してから何 秒後ですか。 バスと花子さんの進む距離の合計が 130m にな ったときだから、バスが動き始めてからs 秒後とす ると, ×102+10(s-10)+2s=130 s=15 最初の10秒 秒速10mで花子さんの進む距離 間で進む距離進む距離) 15 秒後

解決済み 回答数: 1
数学 高校生

195. 変化率を求めるのになぜ微分が必要なのですか??

306 ACX 00000 基本例題 195 変化率 (1) 地上から真上に初速度49m/s で投げ上げられた物体のt秒後の高さんは h=49t-4.9t²(m) で与えられる。この運動について次のものを求めよ。た し,vm/sは秒速vmを意味する。 (ア) 1秒後から2秒後までの平均の速さ (1) 2秒後の瞬間の速さ (2) 半径 10 cm の球がある。毎秒1cm の割合で球の半径が大きくなっていくと き球の体積の5秒後における変化率を求めよ。 p.296 基本事項) 指針 (1) 高さんは時刻tの関数と考えることができる。 h=f(t)=49t-4.9t2 とする。 (ア)平均の速さとは,平均変化率と同じこと。(んの変化量) ÷ (tの変化量)を計算。 (イ) 2秒後の瞬間の速さを求めるには 2秒後から2+b秒後までの平均の速さ (平均 変化率)を求め, 60 のときの極限値を求めればよい。 つまり、微分係数 f'(2)が 代入する。 t=2 における瞬間の速さである。 (2) まず,体積Vを時刻 tの関数で表す。これを V=f(t) とすると、5秒後の変化率は t=5 における微分係数 f'(5) である。 ( COX SU 解答 (1)(ア) (49・2-4.9.22)ー(49・1-4.9・12) zp(x2-1 =34.3(m/s) 2)+(x)\ (イ) t秒後の瞬間の速さはんの時刻t に対する変化率であ dh =49-9.8t dt る。 hをtで微分すると 700- 求める瞬間の速さは, t=2として ~+734 49-9.8.2=29.4(m/s) (2) t秒後の球の半径は (10+t) cm である。 t秒後の球の体積をV cm とすると dV dt Vをtで微分して 求める変化率は, t=5として 練習 4 V= ½π(10+t)³ 13.3(10+t)^1=4z(10+t)^{(ax+b)"'" 4 (10+5)^2=900(cm²/s) 3 tがaから6まで変化する ときの関数 f(t) の平均変 化率は f(b)-f(a) b-a ば,関数h=f(t) の導関数 f'(t), とを,変数を明示してをtで微分するということがある。 dh dt 参照。h'=49-9.8t と書い してもよいが, dh と書くと dt 関数h をtで微分してい ることが式から伝わる。 < については、下の注意 注意 変数がx, y以外の文字で表されている場合にも,導関数は今までと同様に取り扱う。 charf(t)などで表す。また,この導関数を求める。 例え V20x =n(ax+b)²-¹(ax+b) (1) 地上から真上に初速度 29.4m/sで投げ上げられた物体のt 100t-4912(m) で与えられる。 この運動につ t秒後の高さんは

未解決 回答数: 1