学年

質問の種類

数学 高校生

(2)の問題でaの二乗を求めた時に出た答えを約分しちゃダメな理由とaの二乗から二乗を外さないで計算する理由を教えてほしいです!!

P.210 基本 基本 例題 132 多角形の面積 次のような図形の面積Sを求めよ。 (1) AB=6,BC=10, CD = 5, ∠B=∠C=60°の四角形ABCD (2) 1辺の長さが1の正八角形 CHART & THINKING (1) まずは右のように図をかいてみよう。 基本131 からSを、それぞ 多角形の面積はいくつかの三角形に分割するのが基本方針 だが,対角線 AC, BD のどちらで分割するのがよいだろうか? ACで分割→ △ABCに余弦定理を用いると、線分AC の 長さは求められるが,DACの面積はすぐにはわからない。 BD で分割 → △BCD は BC:CD=2:1, ∠BCD=60° に 注目すると, ∠DBCの大きさや線分 BD の長さがわかる。 これを利用して △ABD の面 積を求めてみよう。 6. 5 60° 60° B 10 C 4章 解 (1) (後半) ロンの公式を用 =4+5+6 から って =√s(s-as- (2) 正八角形の外接円の中心を通る対角線で8つの三角形に分割すればよい。 解答 (1) BCD において, BC=10, CD = 5,∠C=60°から ∠BDC=90° ∠DBC=30° BD=BCsin60°=5√3 6 5√3 157 15 22 30° 15/7 △ABD において ∠ABD= ∠ABC-∠DBC=30° 30° 60℃ 4 よって, 求める面積は B 10 60° S=△BCD+ △ABD _n 150° 150=- =1/23・5・5√3+1/23・6・5v3 sin30°=20√3 (2) 正八角形の外接円の中心を0, 1辺をAB とすると AB=1, ∠AOB=360°÷8=45° OA=OB=α とすると, OAB において, 余弦定理により 12=α²+α2-2aacos 45° 整理して 1=(2-√2)a² s150°=- ゆえに a²=- 1 2-√2 2+√2 2 よって, 求める面積は S=8△OAB=8asin45°=2(√2+1) 8.1/23a'si PRACTICE 132Ⓡ 合同な8個の三角形に分 ける。 A 1 B a 45% a αのまま代入する。 )は鈍角三 次のような図形の面積を求めよ。 (1)AD // BC, AB=5,BC=6,DA=2,∠ABC=60°の四角形ABCD (3)1辺の長さが1の正十二角形 (2)AB=2,BC=√3+1,CD=√2,B=60°,C=75° の四角形ABCD 15 三角形の面積、空間図形への応用

未解決 回答数: 1
生物 高校生

3の(3)と5の解説をお願いします!ちなみに5の答えは6通りです

プロセス 次のを、地球上に出現した並べ替えよ。 DNAが遺伝情報をタンパク質が触媒作用を担う生物。 タンパクを担う生物。 RNA情報と作用の両方を担う生物。 DNAの塩基配列に生じる変化について、以下の各問いに答えよ。 (1) DNAが起こる現象を何と呼ぶか。 Process (2) 血液中の酸素の不足によって赤血球が変形し、 それが原因でさまざまな症状を引き 起こすヒトの遺伝病を何というか。 (3)個体間にみられる, 一連の塩基配列中での塩の違いを何というか。 ヒトの染色体数は2=46であり、そのなかには染色体が含まれている。 常染色体の数を答えよ。 女性男性の性染色体の組み合わせをそれぞれ記 と椅子の染色体構成はそれぞれどのように表されるか、核相と常染色体の数22+X 染色体の記号を使って答えよ。 次の いに答えよ。 は、減数分裂の過程を順不同に示したものである。これについて下の各問 ** 22+X 22+Y DNAを複製する。 相同染色体が対合する。 b. 対合した相同染色体が赤道面に並ぶ。 d. 染色体が接着面で分離し、両極に移動する。 相同染色体が対面で分離して両極に移動する。 一般的な減数分裂では、acはどのような順序で起こるか。間にみられるもの 先にして並べ替えよ。 (2) のうち. 数分裂第一分裂中期および 減数分裂第二分裂後期でみられる ものはどれか。 記号で答えよ。 (3) aeのうち、 体細胞分裂でも観察できる現象をすべて選べ。 「2n8の生物がつくる生殖細胞には、乗換えが起こらなかった場合、同通りの染色体 の組み合わせが考えられるか。 * 遺伝子型が Aal の個体が形成する配偶子の遺伝子の組み合わせとその分離比を下 の(1)~(4)の場合についてそれぞれ求めよ。 (1) A()とB(b)がそれぞれ別々の染色体にある場合。 (2) AB. とbが連鎖し、組換えが起こらない場合。 (3) Aとb.とBが連鎖し、 組換えが起こらない場合。 (4) AとB.とbが連鎖し、組換えが20%の場合。 Answer 31突然変異 (2) 3型 (SNP スニップ) 日本 (2) 女性…XX (322+X 精子・カX. 2+Yld XY b2d (32516通り BIA AbuBab-1:1:1:1 (2)AB:ab 1:1 3 Ab: B-1:1 (4)AB: Ab: aBab 4:1:1:4

回答募集中 回答数: 0
数学 高校生

数Iの二次不等式の質問です なぜこの方程式がじつ数回をもつ条件を利用して解くのか理解できないです

重要 例題 1222 変数関数の最大・最小 ( 4 ) 000 小値、およ 実数x, y が x2+y2=2を満たすとき,2x+yのとりうる値の最大値と最小値を 求めよ。また,そのときのx, yの値を求めよ。 思い出 203 [類 南山大 ] 基本 101 指針 条件式は文字を減らす方針でいきたいが,条件式x2+y2=2から文 字を減らしても, 2x+yはxyについての1次式であるからうま くいかない。 見方をか そこで, 2x+y=t とおき, tのとりうる値の範囲を調べることで, 最大値と最小値を求める。 →2x+y=t を y=t-2x と変形し,x2+y2=2に代入してyを消 去すると x2+ (t-2x)=2となり,xの2次方程式になる。 xは実数であるから,この方程式が実数解をもつ条件を利用する。 実数解をもつ⇔D≧0 の利用。 CHART 最大・最小 =t とおいて,実数解をもつ条件利用 13 3章 15 2次不等式 2x+y=t とおくと y=t-2x ① 二もに2枚 これをx2+y2=2に代入すると 解答 式は 整理すると x2+(t-2x)=2 5x2-4tx+t2-2=0 k, yth g-s+x)= ONCE + Sy このxについての2次方程式② が実数解をもつための 条件は、②の判別式をDとすると D≧0 参考実数a, b, x, y に ついて,次の不等式が成り 立つ(コーシー・シュワル ツの不等式)。 (ax+by)²=(a+b²) (x² + y²) [等号成立は ay=bx] この不等式に α=2,6=1 。 ここで D=(-2t)2-5(2-2)=-(f2-10) (ハース)を代入することで解くこと できる。 D≧0 から t2-10≤0 >> これを解いて -√10 ≤t≤√√10 す。 -4t 2t t=±√10 のとき, D=0で,②は重解 x=- を のとき,②は t=±√10 2.5 5 5x2+4√10x+8=0 2√10 もつ。=±√10 のとき x=± 5 よって (√5x+2√2) 20 ①から y=± √10 (複号同順) 5 2/10 よって x= y= 5 √10 のとき最大値 10 5 2/10 √√10 x=- y=- のとき最小値10 ①からy=± (複号同順) ゆえに x=± =± 2√2 2/10 √5 5 √10 5 5 5 としてもよい。

未解決 回答数: 0