1つずっ書いてある4枚の
回還還が袋の中に入って
いらる。この袋の中からカードを1枚
ずつ大 2回取り出して導べ。 1回
目に取り出したカードの閣字を
?国目に取り出したカードの数字を
》とし, そのc。 を使って直線
サーor二2 を者える。ただし。どの
カードの取り出し方も同様確からしいものとする。次の問いに
答えなさい。 dw
(0) 西線の1つをグラフで表すと団のようになった。るの 6の人
をそれぞれ求めなさい。
(9) 直隊は全部で何本できるか。その総数を求めなさい。
(⑲ 束(0.1) を通る直線ができる確率を求めなさい。
(《 [画] 符えが二 になる確率の問題を 1つつくりなさい。
右の図のように。 1 目猫りが1cmの座 届 em (6点x8一8間)
拉面上の点0(0。 0) におはじきがある。 ーーートトドFm 〇 をの四に入
しなきい
@
@
京Cの座近は(5 0) である。 硬貨を1 回投
げて, 表が出たらおはじきを右に 1 cm。 斉
が出たらおはじきを上に 1 cm 動かすこと
にする。 次の問いに答えなさい。 (史)
() 右の図は, 硬貨を3回投げたときの表。
表の出方を表した樹形較の一部である。
⑰ 右の図にかきたして, 図を完成させ
なきら。ただし, 〇は表を, メは右を
表すものとする。
②⑳ 3回目でおはじきが到達する点の雇
~ 標を(Z, の とするとき, のをZの式で表しなさい。
(9) 硬貨を4回投げ,点Oにあるおはじきを。 投げた硬貨表。
裏の出方にしたがって動かす。 3回日で到科する点を A。 4 回
目で到達する点をB とし, 点 0, A。 B, C, 0 をこの順で結ま。
このとき。結んでできた図形が台形である確率を求めなさい。
@