学年

質問の種類

英語 中学生

写真の問題より、(3 )に入る言葉の模範解答がbigger,largerだったのですが私はmoreとかきました。moreだとバツにたりますかね?

Tony: What are you going to make a presentation about? Riku I'm going to introduce my idea for a new park. Here is a graph showing "Roles which people want for parks." I think parks serve many important roles. I want to make a wonderful new park in my town in the future. Tony: Great! Riku What is the most important role for parks for you? Tony: Well, I think "A place for eating" is the most important. Riku: I think that is important too. But its percentage is the lowest in this graph. Roles which people want for parks A hub for the community A place for exercise and sports A place for children to play A place for relaxing A place for eating 0% 10% 20% 30% 40% Tony Interesting. In my country, I often enjoy eating lunch in a park. Riku: I think "A place for children to play" is the most important. Many other people also want that role. Tony Yes. Its percentage is a little lower than that of "A place for exercise and sports" and "A hub for the community." But it's higher than the percentage for the other roles. Riku Parks can play a lot of roles in a town. I'll try to make a park that serves important roles. There are many possible roles for a park in a town. I hope people find good roles for my park. Tony: Great! I think your presentation will be really interesting. I want to know more about parks and towns. hub +0 <要約文> Riku is going to introduce his idea. He and Tony look at a graph that shows some (1) which people want for parks. As for the (2) important role for parks, Riku thinks it is "A place for children to play," but Tony thinks it is "A place for eating." According to the graph, the percentage of Riku's opinion is (③) than Tony's. Riku hopes to make a park that plays important roles.

解決済み 回答数: 1
数学 高校生

このQのx座標はどうやってだしているんですか? 問題文のケ・コ の部分です!

解説 OC=OB=4, ∠COB = 20より, Cの x 座標は 4cos20=4(cos'0-sin20)=4( 4(1-a²) 1+a2 1+a2 a² 1+a 第1問(数学Ⅱ 図形と方程式, 三角関数) II 1 3 4 5 24 【難易度...★★】 Cのy座標は YA `C (p. a) l:y=ax 4sin208sin Acos0=8・ 8a =1+α2 よって, C の座標は a √1+a² √1+a² O Q 18 A(2, 0) B(4,0) (1Xi) C の座標を (p, g) とおくと, l⊥BCより 9-0 p+ag-4=0 4(1-a²) 8a (⑧⑦) 1+a² 1+a² (2) lは線分BCの垂直二等分線であり, Aは分 の中点であるから,Qは OBCの重心である。 よって, Qのx座標は 4(1-a2)] 1/4+4+te 8 3(1+a a. =-1 P-4 (①) 3 1+a2 また、親分BCの中点(+4, が上にあるので Qのy座標は p+4 1 8a =a 2 2 31+α23(1+α2) 8a ap-g+4a=0 (6) ②よりg=ap+4a, ① に代入して p+a(ap+4a)-4=0 (1+α2)p=4(102) よって, Q の座標は Q(3(1+a²ð), 3(1+a²³)) 8a (3, 0) (3)(2)より 第 (1) (ii) 4(1-a²) p= 1+α² ②より √4(1-a²) +4}= g=a 1+a² 8a 1+α² POB=0 (0<< 2 ) とおくと,tan0 はの傾 きを表すので tan 0=a (0) 8 x= 3(1+a2) 8a y= 3(1+α2) とおくと, >0よりx>0,y>0であり,③④より y n a= x 8 これを③,すなわち x(1+α²)に代入して このとき 1 cos20= 1 1+tan20 1+a² COS0 >0より cos= 3 √1+a2 x 8 8 x2+y2=1203 3x 16 よって, 点Qの軌跡は a sin0=tan0cos= √1+a 中心 ( 143 ) 半径 1/3の円 のy>0の部分である。

解決済み 回答数: 1