学年

質問の種類

情報:IT 高校生

期末課題なのですがテストが無い分これで成績が決まってしまうのですが全く分かりません💦教えて欲しいです

■アルゴリズムとプログラミング (課題) 以下の課題に取り組み、 作成したファイルをデスクトップに保存し、PCの「課題提出全日制」 → 「2学年」 「自分のクラスのフォルダー」→「問題番号に対応したフォルダー」にドラッグアンド ドロップして提出しなさい。 (作成できたファイルのみ提出すること) ・Question ① マウスの移動量を表す単位で 「ミッキー」というものがある。 | ミッキーあたり0.254mm(ミリ メートル) である。 以下のプログラムの空欄を埋めて、キーボードからマウスの移動量をミッキーで 入力されたら、 cm (センチメートル) で表示されるプログラムを作りなさい。 (ファイル名は 「出席番号 q1 名前」 で保存すること) 1 a = float(input("マウスを何ミッキー動かしましたか?>")) 2b = 3. print("あなたは", b, "センチメートル動かしました。 ") 実行例 マウスを何ミッキー動かしましたか? >100 あなたは 2.54センチメートル動かしました。 • Question ② 製 以下のプログラムの空欄を埋めて、 「おはよう」, 「さよなら」 と言われたら挨拶を返すプログラム を作りなさい。 (ファイル名は「出席番号 92 名前」 で保存すること) 1 a=str(input("挨拶をしてください>")) 2 if a | "おはよう": print("コンピュータ:", a) "さよなら": print("コンピュータ:", a) 3 4 elifa 5 6 else: 7 実行例 挨拶をしてください > おはよう コンピュータ:おはよう print("コンピュータ:よくわかりません") 挨拶をしてください > さよなら コンピュータ: さよなら 挨拶をしてください > こんにちは コンピュータ: よくわかりません 開始 at 挨拶をしてください> aは "おはよう Yes おはよう 終了 No. は さよなら Yes さよなら No. よくわかりませ

回答募集中 回答数: 0
数学 高校生

この⑵で、三角形の重心と、Pを通る直線を求めようとしたのですが、模範解答はその解き方ではないですが、わたしの解き方でも答えはでますよね?? でも解いてみると、2枚目の写真のようになって答えと違ってしまうんですけど、どこかで計算ミスしてるだけですかね、?

は、たの値に関係な ついての 恒等式 整理する。 ■3x+y-3=0 の交点を 恒等式と考える 係数比較法。 んについての恒等 る。 kA+B=0がんにつ ての恒等式 ⇔A=0, B=0 点の候補を求め、 それた なお、代入する YA めよ。 -2k=0 0 」,「対 83 直線と面積の等分 重要 3点A(6,13), B(1, 2), C(9, 10) を頂点とする △ABC について (2) 辺BCを1:3に内分する点Pを通り, △ABCの面積を2等分する直線の (1) 点Aを通り, △ABCの面積を2等分する直線の方程式を求めよ。 方程式を求めよ。 基本 75.78 指針 解答 大 (1) 三角形の面積比 等高なら底辺の比であるから 求める直線は, 辺BC を同じ比に分ける点, すなわち辺BCの中点を通る。 (2) 求める直線は, 点Pが辺BCの中点より左にあるから, 辺ACと交わる。 この交点をQとすると 等角→挟む辺の積の比(数学A: 図形の性質) 1 CP+CQ により CB・CA 2 これから、点Qの位置がわかる。 各/1+9 合 (1) 求める直線は,辺BCの中点 を通る。 この中点をMとする と、その座標は ACPQ △ABC 2+10 2' 2 y-13= 自由標は すなわち (5, 6) よって 求める直線の方程式は (x-6) HAGENT = 6-13 5-6 y=7x-29 ya ( 3・1+1・9 1+3 0 A(6, 13) P B(1,2) 3.2+1 10 1+3 3 したがって (2) 点Pの座標は すなわち (3,4) 辺AC上に点Qをとると、直線PQ が △ABCの面積を 2等分するための条件は ACPQ CP:CQ 3CQ 1 △ABC CB・CA 4CA 2 -Q C(9, 10) ・M x B ゆえに CQ:CA=2:3 よって, 点Qは辺 CA を2:1に内分するから, その座 /1.9+2.6 1.10+2.13 2+1 2+1 すなわち (7, 12) したがって,2点P Q を通る直線の方程式を求めると y-4= 12-4 7-3 (x-3) すなわち y=2x-2 M 8 ABS ( △ABMと△ACMの高 さは等しい。 135 <異なる2点(x1, yi), (x2, y2) を通る直線の方 程式は y-y=21(x-x) X2-X1 から <AABC= =12CA-CBsin C, ACPQ=CP-CQ sin C 3章 ACPQ CP-CQ △ABC CB・CA また BC: PC=4:3 一直線の方程式、2直線の関係 喫 3点 A (20,24), B(-4,-3), C(10, 4) を頂点とする △ABC について、辺BC を 883 2:5に内分する点Pを通り, ABCの面積を2等分する直線の方程式を求めよ。 p.140 EX 56

回答募集中 回答数: 0