学年

質問の種類

英語 高校生

問4の(2)についてです 私は(2)に「先生を思い出す」と言う意味でウを選んだのですが、答えはアでした。なぜウだと不適なのか教えていただきたいです🙇🏻‍♀️😭

(配点 23) Everyone wants to do well on tests. Here is some advice from successful students on how to do well on tests. Listen to the teacher from the first day of class for hints about what is important. For example, the teacher will emphasize the important information by repeating it or telling you it is important. When you look over your textbook and notes again, you should already know what is important. After each lecture, look over your notes again. Come to class ready to ask questions about what you don't understand. C Look at the visual aids the teacher uses. For example, if the teacher asks you to look at a diagram or graph in your textbook, make sure you understand why that diagram or graph is important. There may be a question on the test that asks about that diagram. Study for an essay exam. Students who prepare for essay exams do better on all types of exams. Students need to know more information for essay exams than for true/false or short-answer exams. There are no hints on the exam itself, so students must learn more for essay exams. To prepare for an essay exam, always read the *material twice before you start taking notes. When you read the material the first time, it may seem difficult. When you read the material the second time, it will seem easier. This is similar to when you (1) have to find the way to a friend's house for the first time. The second time you go to your friend's house, it's easier because you know the way. It may even seem shorter because you don't have to slow down as much to check street names or landmarks. The same is true with the material you read. The second time you will already know the words and ideas. In China, they lp to stop de After you've read the material twice, take notes. At this point, you'll find that you know some of the material and can focus on what is most important. Don't ignore *footnotes in your reading. Sometimes teachers think the information in a footnote is important and will ask a question about it. Write down the important information in is in the years t your notes. After you take notes, go back and add your opinions to them. Write down For food in the desert. the ideas that you agree with and the ideas that you disagree with. People remember ants ex large number

回答募集中 回答数: 0
理科 中学生

物理の凸レンズです。 ⑵と⑶がわかりません。 解説お願いします。

図2 スクリーン スクリーン こうじく 6 凸レンズによる像 図1のように,3個 のLEDを一列に並べた光源をスタンドの 台の上に置いて,その真上に凸レンズ, ス クリーンをとりつけた装置を組み立て、 光 源の緑色LEDを凸レンズの光軸の位置に 合わせた。 凸レンズ,スクリーンを動かし て、スクリーンにはっきりとした像がうつ ったときの, 光源から凸レンズまでの距離. 光源からスクリーンまでの距離を調べ, 表 にまとめた。 次の問いに答えなさい。 図 1 凸レンズ スタンド 光源 cmiam [赤緑 焦点 凸レンズ 中心 焦点 赤緑青 光源 (1) 実験で用いた 凸レンズの焦点 距離は何cmか。 (2)表のXにあてはまる数値は, どのような大きさか。 次のアウ 光源と凸レンズの距離 [cm] 20.0 30.0 45.0 光源とスクリーンの距離 [cm] 80.0 60.0 67.5 赤色LEDの像の中心と青色LED の像の中心との距離 [cm] 6の答え (1) X 2.0 1.0 (2) から選び, 記号で答えなさい。 ア X 1.0 イ 1.0 <X<2.0 (3) 図2にかく。 ウ X>2.0 (3) 図2は, 光源と同じ大きさの実像がスクリーンにうつったとき の凸レンズとスクリーンの位置である。 赤色LED, 青色LEDか ら出た光a, bの進む道筋を作図して示しなさい。

回答募集中 回答数: 0
生物 高校生

(1)と(2)がわかりません 解説お願いします🙇‍♀️

154. DNA の複製に関する次の実験について,以下の問いに答えよ。 適切な培地を入れたシャーレで, 24時間に1回分裂しているヒト由来の培養細胞がある。こ のシャーレに,蛍光を発するヌクレオチドを添加して実験を行った。 ※蛍光顕微鏡を用いて観察すると,このヌクレオチドが取りこまれた部分が,蛍光を発するのが 観察できる。 【実験】 蛍光を発するヌクレオチドを培地に加え, 1時間細胞に取りこませた後,蛍光顕微鏡 を用いて観察したところ, 蛍光を検出できる核をもつ細胞が見られた。 【実験 2】 蛍光を発するヌクレオチドを培地に加え, 3時間細胞に取りこませた。その後,培地 を洗い流し,蛍光を発するヌクレオチドを含まない 培地を新たに加えてさらに10時間培養を続けた。そ の結果, 蛍光顕微鏡を用いて観察すると, 蛍光を検 出できる分裂期中期の染色体が見られた。 (1) 右図は分裂している細胞における, 細胞当たりの DNA量の変化を示したものである。下線部の細胞が, 蛍光を発するヌクレオチドを取りこんだのは,グラ フの①~④のどの時期か ヒガイは199 [3] 1 細胞当たりのDNA量 (相対値) 3 ① ② 0 00 13 ④ 6 9 12 15 18 21 24 27 30 (時間) 経過時間 巻末問題 (2) 実験2の蛍光を検出できる染色体では,図Aで示す分裂期中期の染色体のどの部分が蛍光を 発しているか。 次の中から最も適当なものを1つ選べ。 A ① ② ③ ④ ⑤ 蛍光を発している部分 蛍光を発していない部分 [

回答募集中 回答数: 0
物理 高校生

高校1年の物理基礎、加速度についての質問です。 写真下線部のところで、なぜ0.1で割るのか理解できません。加速度とは1秒間に速度がどれくらい増えるのかを表すものですよね? 図では0.040を0.4にすでに秒速に直しているため、1秒に0.16m増えるということになりませんか... 続きを読む

10 第1運動とエネルギー Let's Try! 例題 5 加速度 <-11 斜面に台車を置き, 静かに手をはなして台車を運動させ,このようす を1秒間に50打点打つ記録タイマーでテープに記録した。 台車 このテープの5打点ごとの長さを測定したところ, 右下図のようにな った。この数値を分析して, 台車の加速度の大きさを求めよ。 解説動画 A B D タイマー テーブ E 0.040m 0.056m 0.072m 0.088m 指針 5打点の時間は0.10秒である。 0.10 秒ご との平均の速さを, 各区間の中央の時刻にお ける瞬間の速さとみなしてその差をとると, 同じく 0.10 秒ごとの速さの変化が得られる。 解答 0.10 秒ごとの平均の速さを求め、その差 を0.10秒で割ると, 平均の加速度が得られ る(右表)。 0.10秒ごとの 移動距離 (m) 0.10 秒ごとの速 各区間の平均 平均の加速度 の速さ(m/s) さの変化(m/s) (m/s²) AB 0.040 0.40 0.16 1.6 BC 0.056 0.56 0.16 1.6 CD 0.072 20.72 0.16 1.6 99 DE 0.088 0.88 よって 1.6m/s2

回答募集中 回答数: 0
数学 高校生

数Ⅱ黄チャート 高次方程式 基本例題62を別解2の方法で解かなきゃいけないんですけど、解き方を忘れてしまったので、解説お願いします🙇

104 基本 例題 62 解から係数決定 (虚数解) 00000 3次方程式 x+ax²+bx+10=0 の1つの解がx=2+i であるとき, 実数 の定数α, bの値と他の解を求めよ。 (山梨学院大 p.98 基本事項2.基本61 解 CHART & SOLUTION x=αがf(x)=0の解⇔f(α) = 0 代入する解は1個(x=2+i) で, 求める値は2個 (αとb) であるが, 複素数の相等 A, B が実数のとき A+Bi=0 A = 0 かつ B=0 により,a,bに関する方程式は2つできるから, a,bの値を求めることができる。 また,実数を係数とするn次方程式が虚数解αをもつとき,共役な複素数も解であるこ とを用いて,次のように解いてもよい。 別解 2αとが解であるから, 方程式の左辺は (x-α)(x-2) すなわち x-(a+α)x+a で割り切れることを利用する。 別解 3 3つ目の解をkとして, 3次方程式の解と係数の関係を利用する。 x=2+iがこの方程式の解であるから ここで, (2+i=2°+3・2'i+3.2i+i=2+11i, (2+i)+α(2+i)+6(2+i) +10=0 (2+i)=22+2・2i+i=3+4i であるから 2+11i+α(3+4i)+6(2+i) +10=0 iについて整理すると 3a+26+12,4α+6+11 は実数であるから 3a+26+12+(4a+6+11)i = 0 3a+2b+12=0, 4a+b+11=0 これを解いて a=-2,b=-3 ゆえに、方程式は x-2x2-3x+10=0 f(x)=x-2x2-3x +10 とすると f(-2)=(-2)-2-(-2)2-3-(-2)+10=0 よって, f(x) は x+2 を因数にもつから f(x)=(x+2)(x²-4x+5) したがって, 方程式は (x+2)(x-4x+5)=0 x+2=0 または x2-4x+5=0 x2-4x+5=0 を解くと x=2±i よって, 他の解は x=-2, 2-i 別解 1 実数を係数とする3次方程式が虚数解 2+i をもつ から,共役な複素数 2-iもこの方程式の解である。 よって,x+ax²+bx +10 は{x-(2+i)}{x-(2-i)} すなわち x4x+5で割り切れる。 mfx-2=i と変形して 両辺を2乗すると x2-4x+5=0 これを利用して x+ax²+bx+10の次数を 下げる方法 (別解 1の3行 目以降と同じ) もある。 (p.93 基本例題 55 参照) この断り書きは重要。 A, B が実数のとき A+Bi=0 ⇔ A=0 かつ B=0 ← 組立除法 1-2-3 10-2 -2 8-10 1-4 50 の部分の断り書きは 重要。

回答募集中 回答数: 0
数学 高校生

2枚目画像のR(S=2)のところで、確率を求めている式の真ん中の3!/2!が何をしているのかがわかりません。教えてください。

第3問 場合の数 確率 【解説】 以下では, 東方向への移動を 南方向への移動を 西方向への移動を 北方向への移動を↑ とし,点Aから出発する経路と4種類の矢印の並べ方を対応さ せて考える.例えば,→→→ という並べ方に対しては次図の (a)の経路が対応し、という並べ方に対しては次図 の (b) の経路が対応する。 逆に,点Aから出発する経路を1つ定め ると,それに対応する矢印の並べ方が1つ得られる。 (コ) B B 「よりも左側に↓があるものの個数を考える。 まず、 、 、 の並べ方が, -=35 (通り) あり、その各々に対して4個の□への 1, 1, 1, ↓の配置の、 仕方が 4, 1, 1, ↑ *1, 1, 1. t 1. 1. L. 1 の3通りずつあるから, 北方向への移動を3回, 南方向への移動 を1回 東方向への移動を3回行うような移動の仕方の数は、 例えば、4個のと3の一の並べ 35通りのうちの1つとして。 ローローロー 35x3 105 (通り)。 四 南北の4枚のカードから無作為に1枚を引く 2 がある。 このとき、条件を満たすように 3の1と1個のを口へと配置す ることで. A (b) (1) 点Aを出発し, 5回の移動後に点Bにいる移動の仕方の数は 1. 1. →,,の並べ方の個数であるから, 5! = 10 (通り)。 2!3! 同じものを含む順列 (2) 点Aを出発し、7回の移動後に点Bにいる移動の仕方のうち、 点Cを通るものは、点Aから点Cに移動するまでに2回, 点 から点Bに移動するまでに5回の移動をすることになる。 点Aから点Cまでの移動の仕方の数は1の並べ方の個数 であるから. のもののうち、αが、 . が ...... あると これらのものを並べてでき 順列の総数は、 (通り) mimi (n=m₁+m+ +m₂) 2!=2 (通り)。 である。 この各々に対して,点Cから点Bまでの移動の仕方の数は 「. の並べ方の個数だけあるから, =5 (通り)。 よって, 点Aを出発し、7回の移動後に点Bにいる移動の仕方 のうち,点を通るものの数は, (通り). また北方向への移動を2回, 西方向への移動を1回 東方向 への移動を4回行うような移動の仕方の数は 1. 1.←→,→ →の並べ方の個数であるから, とき 引き力は4通りあり、これらはすべて同様に確からしい。 よって,, . 1.の移動が起こる確率はすべてである。 ただし、試行を行った点において、道がない方向のカードを引い た場合は移動ではなく Stay が起こる。 (3)点Aを出発し、5回の試行後に点Bにいるのは、 が2回, が3回起こる場合である。 (1)より,その確率は、 -1-1-11 [1] →1→1→ 11-1-1- の3通りの並べ方が得られる。 (4)( (4) 点Aを出発し、7回の試行後に点Bにいるような事のうち. Stay がちょうどk 回 k=0.2) だけ起こる事象をR(S=k) と す。 まず、R(S-2)のうち, D, を過るものについて考える. このとき、最初の2回の試行でDに到達する必要があるから、 が2回起こればよく、その確率は、 Stay がちょうど1回だけ起こると 残りの6回の試行では、7回の行に にいるように移動することができ ない。 また, Stay が3回以上起こると 残りの4回以下の試行ではBに することができない。 (+ さらに、残りの5回の試行で その事は、 が起これば試行でD, からBへ到するに (+)(4)-10(4) よって、 R (S2) かつ 「D, を通る」 確率は, 8. 105 (通り) ... 次に,R(S-2)のうち、D, を通らずにDを通るものについ て考える。 次に,f, f, f. 4.,,の並べ方のうち、3個目の このとき、最初の3回の試行でD, を通らずに D2 に到達する必 25- はが3回起こる必要があり、残りの2 回でStay. つまり「がない」が起 こればよい D, D, D, B

回答募集中 回答数: 0