学年

質問の種類

数学 高校生

(2)の問題で、なぜ判別式がD/4になるのかわかりませんでした。その後の式の意味も理解できていないので、教えてもらえると嬉しいです。

例題 思考プロセス 題 85 2次方程式の実数解の個数 kを定数とするとき, 次の2次方程式の実数解の個数を調べよ。 (1)x2-3x+k-2=0 場合に分ける ★☆ (2)x2+2kx+k-2k+4=0 2次方程式の実数解の個数は判別式 D の符号によって決まる。 (ア) D0 異なる2つの実数解をもつ。 (イ) D = 0 ⇔ ただ1つの実数解 (重解)をもつ。 (ウ) D<0 ⇔ 実数解をもたない。 かどうかで noibA Action» 2次方程式の実数解の個数は, 判別式の符号を調べよ 解 (1) 与えられた2次方程式の判別式をDとすると D=(-3)2-4・1・(k-2)=-4k +17 17 4のとき2個入 (ア)D=-4k+17>0 すなわちくのとき 2個 17 (イ) D=-4k+17=0 すなわち k= =1のとき 1個 17 4 (ウ) D=-4k+17 < 0 すなわちん > > のとき 0 個 moito になる 定数項k-2は()を付 けて1つのものと考えて 計算する。 不等号の向きに注意する。 -4k+17> 0 -S) = -4k> -17 (2)与えられた2次方程式の判別式をDとすると2次方程式 D (ア) 24 D (イ) 4 D 4 = =k-1· (k-2k+4)=2k-4 =2k-40 すなわちん > 2 のとき 2個 =2k-4=0 すなわちん = 2 のとき 1個 これらは、 (ウ) // =2k-40 すなわちん <2のとき0個 ては 17 4 (S) +26′x+c=0 におい D =672-ac 44000 を用いてもよい。 Point .+1)

解決済み 回答数: 1
物理 高校生

背理法による証明 k2乗は整数であるから C の2乗は4の倍数なのに M 2乗+ N 2乗- m - n は整数であるから a 2乗+ b 2乗は4の倍数ではないがわからないので教えてください

例題 4 背理法による証明 第2章 集合と命題 ★★★★~ la, b, c は a2+b2=c2 を満たす自然数とする。 このとき, a, bの少なくとも一方は偶数であること 背理法を用いて示せ。 考え方 結論を否定して矛盾を導く 結論が成り立たないと仮定する。 (結論を否定する) ⇒ 「α,bの少なくとも一方は偶数」の否定は 「a, bがともに奇数」 a+b=c の両辺について, 4の倍数であるかどうかを調べる。 解答 a, b がともに奇数であると仮定する。 [類 岐阜聖徳学園大 ポイント ① 結論を否定 ② 右辺を調べる このとき,a2,2は奇数であるから,c=d'+62 は偶数である。 左辺を調べる ③ 矛盾を導く 練習 4 よって, cも偶数であるから, cは自然数kを用いてc=2k と表される。 ゆえに,c2=(2k)²=4k2となり,kは整数であるから,2は4の倍数である。 一方,奇数 α,bは自然数nを用いて,a=2m-1,b=2n-1 と表される。 このとき,a+b2=(2m-1)+(2n-1)²=4(m²+n-m-n) +2となり、 m²+m²-m-nは整数であるから, a +62は4の倍数ではない。 ゆえに,a+b2=c2において,右辺は4の倍数であるが, 左辺は4の倍数でな から, 矛盾する。 したがって, a, bの少なくとも一方は偶数である。 [終] (1) 正の整数xが3の倍数ではないとき, x2を3で割った余りは1であることを示 (2)x,y,z は x2+y'=z2 を満たす正の整数とする。このとき,x,yの少なく 3の倍数であることを, 背理法を用いて示せ。 〔類

未解決 回答数: 1