学年

質問の種類

数学 高校生

数列が収束しないとlimを分配できないのはわかるんですが、それを一つ一つ解答に書かないとダメですか?普通の計算問題だとそのまんま答え出すのに?、、

問 42 数列の極限 (II) (無限等比数列) 73 liman=r (収束) mn+1 注 第n項が 1+2" (-1)で表される数列の収束, 発散を次の各場 12-00 E r>1 のとき, limy”は発散しますが,逆数をつくれば0</1/1 <1 となり, lim 合について調べよ . 12-00 '=0 と収束させることができます. 次の(4)も同じ要 (1) r=1 (2) -1<r<1 (3) r>1 (4) r<-1 領です. 精講 等比数列 {r"} の極限,すなわち, limyの値によって次のよ うになります. 極限値0 (-1<r<1) 極限値1 (r=1) 収束 limr"= +8 (r>1) 発散 振動する (r≦-1) この基礎問は誘導がついていますが,このことを頭に入れておけば,自力で 場合分けをすることができます。 しかし、この問題は式が分数の形をしていますから, limr", lim y"+1 を求 めたとしても不定形になる可能性があります. 72-00 12-00 解答 mn+1 an= 1+r" (r≠-1) とおく. (1)r=1 のとき, an=1/2 .. liman= =1/2束) 12-00 (2) -1<r<1 のとき, limr" = limy”+1=0 だから, n→∞ liman=0 (収束) 12-00 (3) r>1のとき, an=- n→∞ 0 0 10 以外の定数 r 分子, 分母をr” でわっ +1 ておく 01<1だから,lim =0 71α (4) r<-1 のとき, an= +1 -1<1/12<0だから, lim (1)"=0 7→8 r .. liman=r (収束) →∞ 注 極限を求める問題の解答をかくとき, うかつに lim 記号を分配し てはいけません. 極限が lim (an+bn) = liman+limb となるのは liman=a, limbn=β (α, 'B:定数) の形のとき n→∞ n→∞ すなわち, 数列 {a} と数列{6} がともに収束するときです. だから, 解答のように各項が収束していることを先に示さなければなりません. ポイント 「極限値0(-1<<1)] 収束 極限値1(r=1) ・limy”= n→∞ +8 (r>1) 発散 振動する (r≦-1) ・ うかつに lim 記号を分配しない 演習問題 42 第n項が man+1+1 2n+1 で表される数列の収束, 発散を調べよ. 第4章

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

( 1) 絶対値xの範囲はどうやって決めたのですか? おそらくg (x)である分母の部分は絶対に0になってはいけないから0にならんように範囲を取っている。 でもその場合,なぜ開区間(0,π)だけでいいんですか?開区間(π,2π)でもg '(x)≠0【ロピタルの定理の【2】参... 続きを読む

13 ロピタルの定理 分析でてきたら⇒ロピタル 10563 ロピタルの定理 開いて、 0-(1-5) mil 基本 例題 057 不定形 (号)の極限① ★★☆ 以下の極限値を, ロピタルの定理を用いて求めよ。 mil (1−cosx)sinx -0 (1) lim ex-1-x sinhx-x x0 x−sinx (2) lim (3) lim x→0 x-0 sinx-x 指針 0 fin mil いずれも の不定形の極限である。 f'(x) gix). I g'ix) 0-(x-xdnie) mil (E) 定理 ロピタルの定理 αを含む開区間I上で定義された関数f(x), g(x) が微分可能で,次の条件を満たすとする。 [1] limf(x)=limg(x)=0 x→a x-a [2] xキαであるI上のすべての点xでg'(x) ≠0 '(x.doia) f'(x) [3] 極限 lim が存在する。 x-a g'(x) f(x) このとき, 極限 lim x-a g(x) x-a も存在し lim -=lim ig(x) x-a g'(x) f(x) f'(x) が成り立つ。 mil x0 0<|x| <πにおいて {(1-cos x)sinx}' lim lim ...... 【不定形の極限が現れる場合, f" (x), g" (x), f'(x), g" (x), が存在して定理の条件を満 たすならば,ロピタルの定理は繰り返し用いてよい。 詳しくは 「数研講座シリーズ 大学教養 微分積分」 の112~119ページを参照。 解答 (1) lim{(1-cosx)sinx}=0 かつ lim(x-sinx)=0 x→0 mil= nia- (x−sinx)=1-cosx+0 sinx+cosx−cos x drianil [1] の確認。 mil [2]の確認。 x→0 (x−sinx) x→0 1−cosx 0800- N Fox) cosx-cos 2x =lim ① 1−cosx x0 cos"x-sin'x=cos2x -zag() mil ここで ここでLim(cosx-cos2x)=0 かつ lim (1-cosx) = 0 [1]の確認。 x→0 x→0 もう一度 0<x<πにおいて (1−cosx)=sinx=0 [2] の確認。 ロピタルの 選ぼう! また lim a x0 (cosx-cos 2x)' (1-cos x)' 2sin2x−sinx =lim x→0 sinx [3] の確認。 =lim (4cosx-1)=3 x-0 よって,ロピタルの定理により, ①の極限値も存在して3 (1−cosx)sinx に等しいから lim x-sinx x-0 -=3 4sin2x=2sin x cosx (2) lim (ex-1-x)=0 かつ limx2=0 x→0 x-0 x=0において (x2)'=2x=0 [1]の確認。 [2] の確認。

解決済み 回答数: 1