学年

質問の種類

数学 高校生

2.1 解き方ってこれでも問題ないですよね??

作り の符号で特 を考える とみ を図示 -26 28 2を買 同じ、 2倍 解答 内の 点 (1) AB+EC+FD-(EB+FC+AD) =AB+EC+FD-EB-FC-AD =(AB+BE)+(EC+CF)+(FD+DA) =AE+EF+FA=AF+FA kit. 基本例題2 ベクトルの等式の証明, ベクトルの演算 (1) 次の等式が成り立つことを証明せよ。 AB+EC+FD=EB+FC+AD 3倍 指針 (1) ベクトルの等式の証明は、通常の等式の証明と同 じ要領で行う。 ここでは, (左辺) - (右辺) を変形し て=0 となることを示す。 (2) (ア) x=2a-36-c, y=-4a+56-3C のとき, ya, b,こで表せ。 (イ) 4-3a=x+66 を満たすxをaで表せ。 (3x+y=d, 5x+2y=を満たす,をもで表せ。 を利用するこ 合成 P□+□=PQ, P=PQ ベクトルの計算では,右の変形がポイントとなる。 分割PQ=P+ℓ, (2) ベクトルの加法,減法,実数倍については,数式PQ=Q-□P と同じような計算法則が成り立つ。 向き変え PQ=-QP PP=0・・・ 同じ文字が並ぶと (ア) x=2a-36-c, y=-4a+56-3cのとき, の安心 x-yをa,b,c で表す要領で。 (イ) 方程式 4x-3a=x+66 (ウ) 連立方程式 3x+y=a, 5x+2y=b を解く要領で。 =AA=0 ゆえに AB+EC+FD=EB+FC+AD (2) (7) x−y=(2a-36−č) − (−4ã+5b−3c) =2a-36-c+4a-5b+3c =6a-8b+2c (イ) 4x3x+65から 4x-x=3a+65 よって ゆえに 3x=3a+66 x=a+2b Bi (1) 3x+y=a.. ① x2-② から これを①に代入して 6a-3b+y=a よって 1, 5x+2y=6 =2ab y=-5d+36 00000 ② とする。 CA 384 基本事項 ②③ ... CIDE 左辺(右辺) Sa+da+ sa 向き変えEB=BE など。 合成AB+BE = AÉ など。 検討 A□+□△+△A=0 (しりとりで戻れば ① ) この変形も役立つ。 ただし, それぞれ同じ点。 なお,00と書き間違えな いように。 両辺を3で割る。 6x+2y=2a 1-) 5x+2y=6 x =2a-b 387 1章 ベクトルの演算

回答募集中 回答数: 0
数学 高校生

⑶でどうしてx=1/1+hとおいていいんですか?

3 第1章 例題12 はさみうちの原理 (3) a=1+h (h>0) とおくとき、 次の問いに答えよ. (nは自然数) n(n-1) h²を示せ . (1) (1+h)">l+nh+ 2 =0 を示せ (1hi (2) lim; 11-00 n a" 考え方 (1) (1+h)" を二項定理で展開し, 1, nh, h)₁ = 1th 8-1 が何を表しているか考える。 2 (2) (1) で示した式とはさみうちの原理を利用する. (3) monx" より 1/12 x を関連させることを考える。 解答 (1) 二項定理より,n≧2 のとき, (1+h)"="Co+,Cih+++ Cmh" ≧,Cot,Ch+,Cahe =1+ nh+ これは,n=1のときも成り立つ。 n(n-1) ここで, 1100 よって, (1+h)" ≧1 + nh+ 2 a" n(n-1) (2)(1)より,α"=(1+h)" ≧1+nh+ 2 るから、 両辺の逆数をとって,両辺にnを掛けると ① lim →∞ =lim 2100 limnx"=limn よって, (3) 0<x<1のとき, limnx" = 0 を示せ . 2100 11 → 00 n(n-1), 1+nh+ -h² 2 n 1+nh+ + h N n(n-1) 2 n 11 limnx"=0 + -h² n n(n-1) ² 2 1 n 0 よって, ①,②とはさみうちの原理より lim- n n→∞o a" (3) h>0 より,a=1+h>1 であるから, 0<x<1 よ り、x=- (0)とおくと、(2)より, 10mil h² n/ 2 =lim 1140 -=0 (1+AS)(-AS) n→∞0 が成り立つ. 200 h²>0 であ n (1+h)" =lim- 114 0 mil n (2) lim 次の極限値を求めよ.ただし,nは自然数とする. x n 3" (1) limg" 1100 n! -=0 -=0 Think (a+b)" =Coa" Cia 例題 次 n a" う。 ++C₁ »Co=1, „Ch=n „C₂h²= n(n-1) | h² 2 (与式の右辺を表して いる.) n=1のときも成り立 つか確認する. 考え方 n≧1, h>0 より, (右辺) > 0 を作る式変形を行 (1 a 解 ①の右辺の極限を調べ る。 分母, 分子を n で割る. (2) を利用することを考 える. anx" に着目して x= とおいてみる. p.617

回答募集中 回答数: 0
数学 高校生

(2)なぜ、まるで囲ったような条件がでてくるのですか?

たす A G 不等式を満たす点の存在範囲 (1) 重要 例題 27 複素数zが|z|≦1を満たすとする。 w=z+2i で表される複素数について (1) 点wの存在範囲を複素数平面上に図示せよ。 (2) 2 の絶対値をr, 偏角を0とするとき, rと0の値の範囲をそれぞれ求めよ。 ただし, 0≦0<2πとする。 基本 21.23 指針 (1) w=z+2iからz=w2iとして、これを|z|≦1に代入。 下の検討も参照。 (2) w=R(cosa+isina) [R>0] として, ドモアブルの定理を利用。 →rはR,0はαで表すことができるから (1) で図示した図形をもとにして,まず R, α のとりうる値の範囲を調べる。 2h fry. Vi b b + 4 1 2 よって 解答 (1) w=z+2iから z=w-2i これを21に代入して |w-2i|≦1 ゆえに,点の全体は, 点2i を中心と する半径1の円の周および内部である。 よって,点の存在範囲は右図の斜 線部分。ただし、境界線を含む (2) WR (cosa+isina) [R>0] とする と よって, 条件から (1) の図から したがって 1≤r≤9 また,右図において OA=2, AB=1,∠ABO= w²=R²(cosa+isina)²=R²(cos 2a+isin 2a) r=R2, 0=2a |i|≤|w|≤|3i| ゆえに 1²≤R²≤3² ∠AOB= π π 6 sas 2 3 WX... ゆえに 4 ゆえに 12/2012/30 π 537 S 2 同様にして 4 よって 1/23 2013/0 -π≤2α≤ 3″ π これは 0≦0<2πを満たす。 <AOC= π 6 検討 不等式 | Z-α|≦r, z-a|≧rの表す不等式 P(z), A(α) とすると, AP= |z-αであるから ① 不等式 | z-α|≦r (r > 0) を満たす点 全体は 点Aを中心とする半径の円の周および内部 ② 不等式|z-α|≧r (r > 0) を満たす点 2 全体は 点Aを中心とする半径rの円の周および外部 である。 (1) AV 0 Xx <P(ω), A (2i) とすると, |w-will を満たす点w は,点Aからの距離が1 以下の点, という意味をも つ。 (bhs (1) の図から, wの絶対値 |w| は, w=3iのとき最大, w=i のとき最小となる。 |w|=R P(z) A(a) ||z-a|≤r O sol C (2) x O 左 B 3:6 1 P(z) 55 A(a). |z-a|zr 1章 4 複素数と図形 x 練習z-21を満たす複素数zに対し, w=z+√2iとする。 点wの存在範囲を 27 複素数平面上に図示せよ。 また の絶対値と偏角の値の範囲を求めよ。ただし、 偏角は 0≦2の範囲で考えよ。 Op.80 EX21

回答募集中 回答数: 0