学年

質問の種類

数学 高校生

【確率】大問4の確率の問題を教えてください.  テキスト,授業ノートを寮に忘れたので,全くもって手がつけれはません.  各問の解法を教えていただきたいです.  また,確率問題を解く上でのアドバイス等も教えていただきたいです.  よろしくお願いします.

2/2 問題1 A= 問題用紙 (数学・応用数学) 10 1 030 とおくとき、 下の問いに答えなさい。 101 (1) A の固有多項式 ]tE A を求めなさい。 ただし, Eを3次単位行列とする。 (2) A の固有値と固有ベクトルを求めなさい。 問題2の関数 y=g(x) に関する微分方程式 (*) g/" + y = sing を考える。 u = u(x)=-ycosx+y' sinx, v=v(x)=ysinz+ycosx とおくとき, 下の問いに答えなさい。 (1) ucos+using=yが成り立つことを示しなさい。 (2) , vxの関数として表しなさい。 (3) , を関数として表しなさい。 (4) 微分方程式 (*)の一般解を求めなさい。 問題3 ry 平面において, 領域 S, T を S x² + y² ≤1 T: 1≤ x² + y² ≤ 4,0 ≤ y ≤ と定義する。 下の問いに答えなさい。 (1) 重積分 + 1161202 +y^) drdy を求めなさい。 (2) 重積分 ff. te tan-1dxdy を求めなさい。 I 問題4nを自然数とする。 箱Aには赤玉1個と白玉2個が入っている。 箱Bには赤玉2個 と白玉1個が入っている。 まず箱Aと箱Bをでたらめに選ぶ。 次に、選んだ箱から 復元抽出で回繰り返し玉を取り出す。 下の問いに答えなさい。 (1)n=1のとき, 赤玉が取り出される確率を求めなさい。 (2) n回全てで赤玉が取り出される確率 pm を求めなさい。 (3)回全てで赤玉が取り出される条件の下でn+1回目も赤玉が取り出される条 件付き確率を求めなさい。 問1枚中の 1枚目一 長岡技術科学大学

回答募集中 回答数: 0
数学 高校生

【編入学】写真は,長岡技科大令和2年の数学の問題です.教えてほしい問題は,問題1です. (1)三次単位行列がうまくできません.  そもそもの単位行列の作り方と,解法を教えてください. (2)この問題は,(1)が解ければ自力で解けると思います.答え合わせの参考までに,解法... 続きを読む

2/2 問題用紙 (数学・応用数学) 1 201 問題1 A= 030 とおくとき、 下の問いに答えなさい。 10 1 (1) A の固有多項式 [tE-A を求めなさい。 ただし, Eを3次単位行列とする。 (2) A の固有値と固有ベクトルを求めなさい。 問題2 の関数y=g(x) に関する微分方程式 (*) g" + y = sing を考える。 u = u(x)=-ycosx+y' sinz, v=v(z)=ysinz+g cosx とおくとき, 下の問いに答えなさい。 (1) -ucosz+usinz=yが成り立つことを示しなさい。 (2) u v を関数として表しなさい。 (3) , をxの関数として表しなさい。 (4) 微分方程式 (*) の一般解を求めなさい。 問題3 ry 平面において, 領域 S, T を S x² + y² ≤1 T: 15x² + y² ≤ 4,0 ≤ y ≤ と定義する。 下の問いに答えなさい。 (1) 重積分 JJ (s' + g')dzdy を求めなさい。 (2) 重積分 If tan-1 / dudy を求めなさい 。 問題4nを自然数とする。 箱Aには赤玉1個と白玉2個が入っている。 箱Bには赤玉2個 と白玉1個が入っている。 まず箱Aと箱Bをでたらめに選ぶ。 次に、 選んだ箱から 復元抽出で几回繰り返し玉を取り出す。 下の問いに答えなさい。 (1) n=1のとき, 赤玉が取り出される確率を求めなさい。 (2)回全てで赤玉が取り出される確率pn を求めなさい。 (3) 回全てで赤玉が取り出される条件の下で+1回目も赤玉が取り出される条 件付き確率を求めなさい。 問1枚中の 1枚目一 長岡技術科学大学

回答募集中 回答数: 0
情報:IT 高校生

受け渡し時刻の計算方法を教えてください!

2 待ち行列 次の文章を読み、 問いに答えよ。 喫茶店Sでは,お客さんはレジでドリンクを注文した後,受渡場所まで移 動してドリンクができあがるのを待つというシステムをとっている。オーナー のWさんは最近受渡場所が混雑していることに気づき,最近の売上データを 参考に混雑状況のシミュレーションを行うこととした。 以下が売上データを精 査した結果である。 <精査結果 > ・お客さんの到着間隔は0分~6分の間である。 ・レジ担当は1人であり, レジでの注文と精算完了までに1分かかる。 ・調理担当は1人であり, ドリンクの調理時間は1分~5分である。 また, 注文時刻と同時にドリンクをつくりはじめるが,先のドリンクをつくり終え るまで,次のドリンクをつくりはじめることはできない。 お客さんは注文時刻の1分後に受渡場所に移動し、商品の受渡を待つ。 待ち 時間は 「受渡時刻 (注文時刻+1)」 で求めるものとする。 この結果より, ある日の開店からの10人分のデータをシミュレーションす ると,下表のようにまとめることができた。 客 1 2 3 4 5 6 7 8 9 10 到着間隔 到着時刻 注文時刻 0 2 6 9 15 16 16 18 23 23 2 4 3 6 1 0 2 5 0 0 2 6 9 15 16 16 18 23 23 調理時間 受渡時刻 待ち時間 2 2 1 5 7 4 1 8 2 5 1 3 2 2 2 1 (1) 4人目以降の到着時刻 注文時刻・受渡時刻・待ち時間を表に記入せよ。 (2) 10人のお客さんの平均待ち時間を答えよ。 (3) このシミュレーションの結果,同時にドリンクの受けとりを待っているお 客さんの最大人数は何人と考えられるか答えよ。 [計算スペース] 2 (1) 表に記入 (2) (3) |検印 第3編 コンピュータとプログラミング

回答募集中 回答数: 0